• A
  • A
  • A

PUBLICATIONS


The publications below are the bibliography of Markus Seeliger and his lab at Stony Brook University. Works from his PhD with Laura Itzhaki and postdoc research with John Kuriyan are also included; including publications which are hard to find on PubMed.



Measuring Phospholipase D Enzymatic Activity Through Biochemical and Imaging Methods.
Philip, F., Ha, E.E., Seeliger, M.A., and M.A. Frohman.
Methods Enzymol. 2017;583:309-325.
http://www.ncbi.nlm.nih.gov/pubmed/28063496

Enzymatic activity and thermodynamic stability of biliverdin IXβ reductase are maintained by an active site serine.
Chu, W.T., Nesbitt, N.M., Gnatenko, D.V., Li, Z., Zhang, B., Seeliger, M.A., Browne, S., Mantle, T.J., Bahou, W.F., and J. Wang.
Chemistry. 2016 Nov 29. doi: 10.1002/chem.201604517. [Epub ahead of print]
http://www.ncbi.nlm.nih.gov/pubmed/27897348

Dynamically coupled residues within the SH2 domain of FYN are key to unlocking its activity. Huculeci, R., Cilia, E., Lyczek, A., Buts, L., Houben, K., Seeliger, M.A., van Nuland, N., and T. Lenaerts
Structure. 2016. Nov 1;24(11):1947-1959
http://www.ncbi.nlm.nih.gov/pubmed/27692963

A Novel In Vitro CypD-Mediated p53 Aggregation Assay Suggests a Model for Mitochondrial Permeability Transition by Chaperone Systems Lebedev, I., Nemajerova, A., Foda, Z.H., Kornaj, M., Tong, M., Moll, U.M., and M.A. Seeliger
J Mol Biol. 2016. Oct 9;428(20):4154-4167
http://www.ncbi.nlm.nih.gov/pubmed/27515399

Structural and Biochemical Basis for Intracellular Kinase Inhibitionby Src-specific Peptidic Macrocycles.
Aleem, S.U., Georghiou, G., Kleiner, R.E., Guja, K.E., Craddock, B.P., Lyczek, A., Chan, A.I., Garcia-Diaz, M., Miller, W.T., Liu, D.R., and M.A. Seeliger
Cell Chemical Biology. 2016. Volume 23, Issue 9, p1103–1112
http://www.ncbi.nlm.nih.gov/pubmed/27593110

An open library of human kinase domain constructs for automated bacterial expression.
Parton, D.L., Hanson, S.M., Rodríguez-Laureano, L., Albanese, S.K., Gradia, S., Jeans, C., Seeliger, M.A., Chodera, J.D.
bioRxiv. 2016:038711
http://www.biorxiv.org/content/early/2016/02/03/038711

Structural and Functional Analysis of the Allosteric Inhibition of IRE1α with ATP-Competitive Ligands. Feldman, H.C., Tong, M., Wang, L., Meza-Acevedo, R., Gobillot, T.A., Lebedev, I., Gliedt, M.J., Hari, S.B., Mitra, A.K., Backes, B.J., Papa, F.R., Seeliger, M.A.*, and D.J. Maly* (*co-corresponding authors)
ACS Chem Biol, 2016. Jun 9
http://www.ncbi.nlm.nih.gov/pubmed/27227314

Conformation-selective analogs of dasatinib reveal insight into kinase inhibitor binding and selectivity. Kwarcinski, F.E., Brandvold, K.R., Phadke, S., Beleh, O.M., Johnson, T.K., Meagher, J.L., Seeliger, M.A., Stuckey, J.A. and M.B. Soellner
ACS Chem Biol, 2016. 2016 May 20;11(5):1296-304
http://www.ncbi.nlm.nih.gov/pubmed/26895387

Fibronectin Interaction and Enhancement of Growth Factors: Importance for Wound Healing. Sawicka, K.M., Seeliger, M., Musaev, T., Macri, L.K., and R.A. Clark Adv Wound Care (New Rochelle), 2015. Aug 1;4(8):469-478. Review.
http://www.ncbi.nlm.nih.gov/pubmed/26244103

A dynamically coupled allosteric network underlies binding cooperativity in Src kinase.
Foda, Z.H., Shan, Y., Kim, E.T., Shaw, D.E., and M.A. Seeliger
Nature Communications, 2015. Jan 20;6:5939.
http://www.ncbi.nlm.nih.gov/pubmed/25600932

Targeting Conformational Plasticity of Protein Kinases
Tong, M., and M.A. Seeliger
ACS Chem Biol, 2014. Dec 19
http://www.ncbi.nlm.nih.gov/pubmed/25486330

Kinase inhibitors: An allosteric add-on
Foda, Z.H., and M.A. Seeliger
Nature Chem Biol, 2014. 10(10)796-7
http://www.ncbi.nlm.nih.gov/pubmed/25195010

Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones
Maianti J.P., A McFedries, Z.H. Foda, R.E. Kleiner, X.Q. Du, M.A. Leissring, W.J. Tang, M.J. Charron, M.A. Seeliger, A. Saghatelian, and D.R. Liu
Nature, 2014. 511(7507):94-8
http://www.ncbi.nlm.nih.gov/pubmed/24847884

A novel activating, germline JAK2 mutation, JAK2R564Q, causes familial essential thrombocytosis.
Etheridge S.L., M.E. Cosgrove, V. Sangkhae, L. Corbo, M. Roh, M.A. Seeliger, E.L. Chan, and I.S. Hitchcock.
Blood, 2014. 123(7):1059-68
http://www.ncbi.nlm.nih.gov/pubmed/24381227

Conformation-selective inhibitors reveal differences in the activation and phosphate-binding loops of the tyrosine kinases Abl and Src. Hari S.B., B.G. Perera, P. Ranjitkar, M.A. Seeliger, and D.J. Maly.
ACS Chem Biol, 2013. 8(12):2734-43.
http://www.ncbi.nlm.nih.gov/pubmed/24106839

p73 - constitutively open for business
Seeliger, M.A., and U.M. Moll
Cell Death Differ, 2013. 20(8):972-3
http://www.ncbi.nlm.nih.gov/pubmed/23832148

Metazoan-like signaling in a unicellular receptor tyrosine kinase.
Schultheiss, K.P., B.P. Craddock, M. Tong, M. Seeliger, and W.T. Miller,
BMC Biochemistry, 2013. 14(1):4
http://www.ncbi.nlm.nih.gov/pubmed/23398683

Divergent allosteric control of the IRE1α endoribonuclease using kinase inhibitors.
Wang, L., B.G. Perera, S.B. Hari, B. Bhhatarai, B.J. Backes, M.A. Seeliger, S.C. Schürer, S.A. Oakes, F.R Papa, and D.J. Maly,
Nat Chem Biol. 2012. 8(12): p. 982-9.
http://www.ncbi.nlm.nih.gov/pubmed/23086298

Chapter Eleven - Analysis of DEAD-Box Proteins in mRNA Export
Monpetit, B., M.A. Seeliger, and K. Weis,
Methods in Enzymology, 2012. 511: p. 239-54
http://www.sciencedirect.com/science/article/pii/B9780123965462000115

Highly specific, bisubstrate-competitive Src inhibitors from DNA-templated macrocycles.
Georghiou, G., R.E. Kleiner, M. Pulkoski-Gross, D.R. Liu, and M.A. Seeliger,
Nat Chem Biol. 2012. 8(4): p. 366-74
http://www.ncbi.nlm.nih.gov/pubmed/22344177

How does a drug molecule find its target binding site?
Shan, Y., E.T. Kim, M.P. Eastwood, R.O. Dror, M.A. Seeliger, and D.E. Shaw,
J Am Chem Soc, 2011. 133(24): p. 9181-3.
http://www.ncbi.nlm.nih.gov/pubmed/21545110

A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export.
Montpetit, B., N.D. Thomsen, K.J. Helmke, M.A. Seeliger, J.M. Berger, and K. Weis,
Nature, 2011. 472(7342): p. 238-42.
http://www.ncbi.nlm.nih.gov/pubmed/21441902

Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms.
Jura, N., X. Zhang, N.F. Endres, M.A. Seeliger, T. Schindler, and J. Kuriyan,
Mol Cell, 2011. 42(1): p. 9-22.
http://www.ncbi.nlm.nih.gov/pubmed/21474065

Discovery of a small-molecule type II inhibitor of wild-type and gatekeeper mutants of BCR-ABL, PDGFRalpha, Kit, and Src kinases: novel type II inhibitor of gatekeeper mutants.
Weisberg, E., H.G. Choi, A. Ray, R. Barrett, J. Zhang, T. Sim, W. Zhou, M. Seeliger, M. Cameron, M. Azam, J.A. Fletcher, M. Debiec-Rychter, M. Mayeda, D. Moreno, A.L. Kung, P.A. Janne, R. Khosravi-Far, J.V. Melo, P.W. Manley, S. Adamia, C. Wu, N. Gray, and J.D. Griffin.
Blood, 2010. 115(21): p. 4206-16.
http://www.ncbi.nlm.nih.gov/pubmed/20299508

A conserved protonation-dependent switch controls drug binding in the Abl kinase.
Shan, Y., M.A. Seeliger, M.P. Eastwood, F. Frank, H. Xu, M.O. Jensen, R.O. Dror, J. Kuriyan, and D.E. Shaw,
Proc Natl Acad Sci U S A, 2009.106(1): p. 139-44.
http://www.ncbi.nlm.nih.gov/pubmed/19109437

Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations.
Seeliger, M.A., P. Ranjitkar, C. Kasap, Y. Shan, D.E. Shaw, N.P. Shah, J. Kuriyan, and D.J. Maly,
Cancer Res, 2009. 69(6): p. 2384-92.
http://www.ncbi.nlm.nih.gov/pubmed/19276351

A MAPK scaffold lends a helping hand.
Seeliger, M.A. and J. Kuriyan,
Cell, 2009. 136(6): p. 994-6.
http://www.ncbi.nlm.nih.gov/pubmed/19303841

Comparative analysis of mutant tyrosine kinase chemical rescue.
Muratore, K.E., M.A. Seeliger, Z. Wang, D. Fomina, J. Neiswinger, J.J. Havranek, D. Baker, J. Kuriyan, and P.A. Cole,
Biochemistry, 2009. 48(15): p. 3378-86.
http://www.ncbi.nlm.nih.gov/pubmed/19260709

N-myristoylated c-Abl tyrosine kinase localizes to the endoplasmic reticulum upon binding to an allosteric inhibitor.
Choi, Y., M.A. Seeliger, S.B. Panjarian, H. Kim, X. Deng, T. Sim, B. Couch, A.J. Koleske, T.E. Smithgall, and N.S. Gray,
J Biol Chem, 2009. 284(42): p. 29005-14.
http://www.ncbi.nlm.nih.gov/pubmed/19679652

Tuning a three-component reaction for trapping kinase substrate complexes.
Statsuk, A.V., D.J. Maly, M.A. Seeliger, M.A. Fabian, W.H. Biggs, 3rd, D.J. Lockhart, P.P. Zarrinkar, J. Kuriyan, and K.M. Shokat,
J Am Chem Soc, 2008. 130(51): p. 17568-74.
http://www.ncbi.nlm.nih.gov/pubmed/19053485

Structural basis for the recognition of c-Src by its inactivator Csk.
Levinson, N.M., M.A. Seeliger, P.A. Cole, and J. Kuriyan,
Cell, 2008. 134(1): p. 124-34.
http://www.ncbi.nlm.nih.gov/pubmed/18614016

Activation of tyrosine kinases by mutation of the gatekeeper threonine.
Azam, M., M.A. Seeliger, N.S. Gray, J. Kuriyan, and G.Q. Daley,
Nat Struct Mol Biol, 2008. 15(10): p. 1109-18.
http://www.ncbi.nlm.nih.gov/pubmed/18794843

c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty.
Seeliger, M.A., B. Nagar, F. Frank, X. Cao, M.N. Henderson, and J. Kuriyan,
Structure, 2007. 15(3): p. 299-311.
http://www.ncbi.nlm.nih.gov/pubmed/17355866

Structure of the kinase domain of an imatinib-resistant Abl mutant in complex with the Aurora kinase inhibitor VX-680.
Young, M.A., N.P. Shah, L.H. Chao, M. Seeliger, Z.V. Milanov, W.H. Biggs, 3rd, D.K. Treiber, H.K. Patel, P.P. Zarrinkar, D.J. Lockhart, C.L. Sawyers, and J. Kuriyan,
Cancer Res, 2006. 66(2): p. 1007-14.
http://www.ncbi.nlm.nih.gov/pubmed/16424036

Activation of ubiquitin ligase SCF(Skp2) by Cks1: insights from hydrogen exchange mass spectrometry. Yao, Z.P., M. Zhou, S.E. Kelly, M.A. Seeliger, C.V. Robinson, and L.S. Itzhaki,
J Mol Biol, 2006. 363(3): p. 673-86.
http://www.ncbi.nlm.nih.gov/pubmed/16979657

Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase.
Nagar, B., O. Hantschel, M. Seeliger, J.M. Davies, W.I. Weis, G. Superti-Furga, and J. Kuriyan,
Mol Cell, 2006. 21(6): p. 787-98.
http://www.ncbi.nlm.nih.gov/pubmed/16543148

Folding and fibril formation of the cell cycle protein Cks1.
Bader, R., M.A. Seeliger, S.E. Kelly, L.L. Ilag, F. Meersman, A. Limones, B.F. Luisi, C.M. Dobson, and L.S. Itzhaki,
J Biol Chem, 2006. 281(27): p. 18816-24.
http://www.ncbi.nlm.nih.gov/pubmed/16675442

High yield bacterial expression of active c-Abl and c-Src tyrosine kinases.
Seeliger, M.A., M. Young, M.N. Henderson, P. Pellicena, D.S. King, A.M. Falick, and J. Kuriyan,
Protein Sci, 2005. 14(12): p. 3135-9.
http://www.ncbi.nlm.nih.gov/pubmed/16260764

Role of conformational heterogeneity in domain swapping and adapter function of the Cks proteins.
Seeliger, M.A., M. Spichty, S.E. Kelly, M. Bycroft, S.M. Freund, M. Karplus, and L.S. Itzhaki,
J Biol Chem, 2005. 280(34): p. 30448-59.
http://www.ncbi.nlm.nih.gov/pubmed/15772084

Mechanism of CDK5/p25 binding by CDK inhibitors.
Mapelli, M., L. Massimiliano, C. Crovace, M.A. Seeliger, L.H. Tsai, L. Meijer, and A. Musacchio,
J Med Chem, 2005. 48(3): p. 671-9.
http://www.ncbi.nlm.nih.gov/pubmed/15689152

Weak cooperativity in the core causes a switch in folding mechanism between two proteins of the cks family.
Seeliger, M.A., S.E. Breward, and L.S. Itzhaki,
J Mol Biol, 2003. 325(1): p. 189-99.
http://www.ncbi.nlm.nih.gov/pubmed/12473461

Cooperative organization in a macromolecular complex.
Seeliger, M.A., S.E. Breward, A. Friedler, O. Schon, and L.S. Itzhaki,
Nat Struct Biol, 2003. 10(9): p. 718-24.
http://www.ncbi.nlm.nih.gov/pubmed/12897769

Three different binding sites of Cks1 are required for p27-ubiquitin ligation.
Sitry, D., M.A. Seeliger, T.K. Ko, D. Ganoth, S.E. Breward, L.S. Itzhaki, M. Pagano, and A. Hershko,
J Biol Chem, 2002. 277(44): p. 42233-40.
http://www.ncbi.nlm.nih.gov/pubmed/12140288

Folding and association of the human cell cycle regulatory proteins ckshs1 and ckshs2.
Seeliger, M.A., J.W. Schymkowitz, F. Rousseau, H.R. Wilkinson, and L.S. Itzhaki,
Biochemistry, 2002. 41(4): p. 1202-10.
http://www.ncbi.nlm.nih.gov/pubmed/11802719