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Abstract Acute kidney injury (AKI) (previously called
acute renal failure) is characterized by a reversible increase
in the blood concentration of creatinine and nitrogenous
waste products and by the inability of the kidney to regulate
fluid and electrolyte homeostasis appropriately. The inci-
dence of AKI in children appears to be increasing, and the
etiology of AKI over the past decades has shifted from
primary renal disease to multifactorial causes, particularly
in hospitalized children. Genetic factors may predispose
some children to AKI. Renal injury can be divided into pre-
renal failure, intrinsic renal disease including vascular
insults, and obstructive uropathies. The pathophysiology
of hypoxia/ischemia-induced AKI is not well understood,
but significant progress in elucidating the cellular, bio-
chemical and molecular events has been made over the past
several years. The history, physical examination, and
laboratory studies, including urinalysis and radiographic
studies, can establish the likely cause(s) of AKI. Many
interventions such as ‘renal-dose dopamine’ and diuretic
therapy have been shown not to alter the course of AKI.
The prognosis of AKI is highly dependent on the
underlying etiology of the AKI. Children who have
suffered AKI from any cause are at risk for late develop-
ment of kidney disease several years after the initial insult.
Therapeutic interventions in AKI have been largely

disappointing, likely due to the complex nature of the
pathophysiology of AKI, the fact that the serum creatinine
concentration is an insensitive measure of kidney function,
and because of co-morbid factors in treated patients.
Improved understanding of the pathophysiology of AKI,
early biomarkers of AKI, and better classification of AKI
are needed for the development of successful therapeutic
strategies for the treatment of AKI.

Keywords Acute renal failure . Acute kidney injury .

Hypoxic/ischemic injury . Acute tubular necrosis

Introduction

Acute kidney injury (AKI) (previously called acute renal
failure) is characterized by a reversible increase in the blood
concentration of creatinine and nitrogenous waste products
and by the inability of the kidney to regulate fluid and
electrolyte homeostasis appropriately. There are many causes
of AKI, and the more common ones are listed in Table 1.
Some causes of AKI, such as rapidly progressive glomeru-
lonephritis (RPGN), may present as AKI but rapidly evolve
into chronic kidney disease (CKD). Several renal diseases,
such as the hemolytic–uremic syndrome (HUS), Henoch–
Schönlein purpura, and obstructive uropathy with associated
renal dysplasia, may present as AKI with improvement of
renal function to normal or near-normal levels, but the
child’s renal function may slowly deteriorate, leading to
CKD several months to years later.

Children with AKI due to hypoxic/ischemic insults,
HUS, acute glomerulonephritis and other causes are more
likely to demonstrate oliguria or anuria (urine output less
than 500 ml/24 h in older children or urine output less than
1 ml/kg per hour in younger children and infants). Children
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with acute interstitial nephritis, nephrotoxic renal insults
including aminoglycoside nephrotoxicity, and contrast
nephropathy are more likely to have AKI with normal
urine output. The morbidity and mortality rates of non-
oliguric AKI are less than those of oliguric renal failure
[1–5]. This review will discuss the epidemiology of AKI,
the common causes of AKI, the pathophysiology of
hypoxia/ischemia-induced AKI, the new aspect of manage-
ment of AKI, and potential future therapies for AKI. This
review will not address fluid and electrolyte management,
nutritional therapy, or renal replacement therapy for AKI, as
these aspects of AKI will be the topics of forthcoming
reviews.

Epidemiology of acute kidney injury

While the precise incidence and causes of AKI in pediatric
patients is unknown, recent studies suggest that the incidence
of AKI in hospitalized children is increasing [1–10]. An
important cause of AKI in hospitalized children is in the
setting of post-cardiac surgery and in children undergoing
stem cell transplantation. AKI in such children is frequently

multifactorial, with ischemic/hypoxic injury and nephrotoxic
insults being important contributors; the pathophysiology of
hypoxic ischemic injury and nephrotoxic insults are descried
below. No epidemiology studies using an established
definition of AKI have been conducted in pediatric patients.
As described below, in pre-renal AKI the kidney is
intrinsically normal, and renal function promptly returns to
normal with restoration of adequate renal perfusion, while, in
acute tubular necrosis, the kidney has sustained intrinsic
injury which requires repair and recovery before renal
function returns to normal. In a large study of adult patients,
the incidence of AKI was 209 per million population, and
the most common cause of AKI was pre-renal in 21% of
patients and acute tubular necrosis in 45% of patients [11].
Similar epidemiologic studies have not been performed in
pediatric patients, but hypoxia/ischemia- and nephrotoxin-
induced AKI have been shown to be important causes of
AKI in neonates, children and adolescents [1–10]. In a study
of pediatric patients in a tertiary care center, 227 children
received dialysis during an 8-year interval for an overall
incidence of 0.8 per 100,000 total population [2]. In a study
of neonates, the incidence of AKI ranged from 8% to 24% of
newborns, and AKI was particularly common in neonates
who had undergone cardiac surgery [3, 10]. Neonates with
severe asphyxia had a higher incidence of AKI, while
neonates with moderate asphyxia developed AKI less often
[3, 7, 8]. Other studies have demonstrated that very low birth
weight (less than 1,500 g), a low Apgar score, a patent
ductus arteriosus and maternal receipt of antibiotics and
nonsteroidal anti-inflammatory drugs was associated with the
development of AKI [6]. A low Apgar score and maternal
ingestion of nonsteroidal anti-inflammatory drugs has been
associated with decreased renal function in preterm infants
[6, 12]. The incidence of AKI in newborns in a developing
country was 3.9/1,000 live births and 34.5/1,000 newborns
admitted to the neonatal unit [7].

Several studies have demonstrated that, in addition to
environmental factors, there may be genetic risk factors for
AKI in some newborns and children. Several candidate
polymorphisms have not been shown to be associated with
AKI, while other polymorphisms have been found to be
associated with AKI. Polymorphism of the angiotensin-
converting enzyme (ACE) gene or the angiotensin receptor
gene, with resultant alterations in activity of the renin–
angiotensin system, does not appear to play a role in the
development of AKI [13]. In studies of newborns, poly-
morphisms of tumor necrosis factor alpha, interleukin 1b,
interleukin 6 and interleukin 10 genes were investigated to
determine if polymorphisms of these genes would lead to a
more intense inflammatory response and predispose
newborns to AKI [14]. The allelic frequency of the
individual genes did not differ between newborns with
AKI and those without AKI, but the TNFa/IL-6 AG/GC

Table 1 Etiology of common causes of acute kidney injury

Type Etiology

Pre-renal injury Decreased true intravascular volume
Decreased effective intravascular volume

Intrinsic renal disease Acute tubular necrosis (vasomotor
nephropathy)
Hypoxic/ischemic insults
Drug induced
Toxin mediated
Endogenous toxins—hemoglobin,
myoglobin

Exogenous toxins—ethylene glycol,
methanol

Uric acid nephropathy and tumor lysis
syndrome

Interstitial nephritis
Drug induced
Idiopathic

Glomerulonephritis—RPGN
Vascular lesions
Renal artery thrombosis
Renal vein thrombosis
Cortical necrosis
Hemolytic uremic syndrome

Hypoplasia/dysplasia with or without
obstructive uropathy
Idiopathic
Exposure to nephrotoxic drugs in utero

Obstructive uropathy Obstruction in a solitary kidney
Bilateral ureteral obstruction
Urethral obstruction
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haplotype was present in 26% of newborns who developed
AKI compared to 6% of newborns who did not develop
AKI. The investigators suggested that the combination of
these polymorphisms might lead to a greater inflammatory
response and the development of AKI in neonates with
infection [13]. As described below, future therapies for AKI
might involve strategies to interrupt the inflammatory
response. In other studies, the incidence of ACE I/D allele
genotypes or the variants of the angiotensin I receptor gene
did not differ in neonates with AKI compared to neonates
without AKI, but they may be associated with patent ductus
arteriosus and heart failure and indirectly contribute to
CKD [14, 15]. AKI occurred more commonly in very low
birth weight neonates carrying the heat shock protein 72
(1267) GG genetic variation, which is associated with low
inducibility of heat shock protein 72 [16]. Given the
important role of heat shock proteins in ischemic renal
injury, these findings suggest that some neonates are more
susceptible to ischemic injury [17]. Future studies of the
genetic background of the child at risk for AKI due to
medication exposure, toxin exposure, ischemic hypoxic
insults or other insults will likely impact on the treatment of
the child at risk for AKI and the management of AKI.

Diagnosis and etiology of acute kidney injury

Table 1 provides a partial listing of the many different and
diverse causes of AKI in children. Currently, there is not a
uniform definition of AKI in adult and pediatric patients,
and AKI is defined in multiple ways, but the majority of
definitions of AKI currently in use involve a change in the
serum creatinine level. It is accepted that the concentration
of serum creatinine is an insensitive and delayed measure of
decreased kidney function following AKI. Other bio-
markers under investigation include changes in plasma
neutrophil gelatinase-associated lipocalin (NGAL) and
cystatin C levels and urinary changes in NGAL, interleukin-
18 (IL-18) and kidney injury molecule-1 (KIM-1) [18]. As
described below, the development, testing and successful
implementation of therapeutic strategies in AKI will require
the development of sensitive biomarkers, so that therapy can
be initiated in a timely manner. As described above, the
definition of AKI in adults and pediatric patients has been
quite variable. A new classification system entitled the
RIFLE criteria (R risk for renal dysfunction, I injury to the
kidney, F failure of kidney function, L loss of kidney
function, and E end-stage renal disease) has been proposed
as a standardized classification of acute kidney injury in
adults [19] and has been adapted for pediatric patients [20].
The pediatric RIFLE (pRIFLE) was found to classify
pediatric AKI better and to reflect the course of AKI in
children admitted to the intensive care unit (ICU) [20]. The

pediatric RIFLE criteria appear to be quite promising for
better characterization of AKI and has been validated in
children; additional studies are needed to validate this
classification further [20]. Further validation and utilization
of pRIFLE criteria would allow inter-center comparisons to
be made of AKI in children. The RIFLE criteria are utilized
by the Acute Kidney Injury Network (AKIN), which is a
group of adult nephrologists, pediatric nephrologists, critical
care physicians and societal organizations interested in AKI
research; the focus of AKIN is to facilitate international,
interdisciplinary and intersociety collaborations to ensure
progress in the field of AKI [21].

AKI can be divided into pre-renal injury, intrinsic renal
disease, including vascular insults, and obstructive uropa-
thies (see Table 1). Some causes of AKI, such as cortical
necrosis and renal vein thrombosis, occur more commonly in
neonates, whereas HUS is more common in young children,
and RPGN generally occurs in older children and adoles-
cents. An important cause of AKI in neonates is exposure to
maternal drugs in utero that interfere with nephrogenesis
such as angiotensin-converting enzyme inhibitors, angioten-
sin receptor blockers and nonsteroidal anti-inflammatory
drugs [22–25]. The history, physical examination, and
laboratory tests such as urinalysis and radiographic studies
can establish the likely cause(s) of AKI. In many instances,
such as AKI occurring in hospitalized children, multiple
factors are likely to be implicated in the etiology of AKI.

Pre-renal injury

Pre-renal injury occurs when blood flow to the kidney is
reduced due to true intravascular volume contraction or to
decreased effective blood volume. Since the kidneys are
intrinsically normal, pre-renal injury is reversible once the
blood volume and hemodynamic conditions have been restored
to normal. Prolonged pre-renal injury can result in intrinsic AKI
due to hypoxic/ischemic acute tubular necrosis (ATN). The
evolution of pre-renal injury to intrinsic renal injury is not
sudden, and several compensatory mechanisms maintain renal
perfusion when renal hemodynamics are not optimal. When
renal perfusion is compromised, the afferent arterioles relax
their vascular tone to decrease renal vascular resistance and
maintain renal blood flow. During renal hypoperfusion, the
intrarenal generation of vasodilatory prostaglandins, including
prostacyclin, mediates vasodilatation of the renal micro-
vasculature to maintain renal perfusion. Administration of
cyclo-oxygenase inhibitors such as aspirin or nonsteroidal anti-
inflammatory drugs can inhibit this compensatory mechanism
and precipitate acute renal insufficiency [26]. Similarly, when
renal perfusion pressure is low, as in renal artery stenosis, the
intraglomerular pressure necessary to drive filtration is, in part,
mediated by increased intrarenal generation of angiotensin II

Pediatr Nephrol (2009) 24:253–263 255



to increase efferent arteriolar resistance. Administration of
angiotensin-converting enzyme inhibitors in these conditions
can eliminate the pressure gradient needed to drive filtration
and precipitate AKI [27, 28]. Thus, administration of
medications that can interfere with compensatory mechanisms
to maintain renal perfusion can precipitate AKI in certain
clinical circumstances.

Pre-renal injury results from renal hypoperfusion due to
true volume contraction from hemorrhage, dehydration due
to gastrointestinal losses, salt-wasting renal or adrenal
diseases, central or nephrogenic diabetes insipidus, in-
creased insensible losses, as occurs in burns, and in disease
states associated with third space losses, such as sepsis,
nephrotic syndrome, traumatized tissue, and capillary leak
syndrome. Decreased effective blood volume occurs when
the true blood volume is normal or increased but renal
perfusion is decreased due to diseases such as congestive
heart failure, cardiac tamponade, and hepatorenal syndrome.
Whether pre-renal injury is caused by true volume depletion
or decreased effective blood volume, correction of the
underlying disturbance will return renal function to normal.

Several measures of urinary parameters, including urine
osmolality, urine sodium concentration, the fractional
excretion of sodium, and the renal failure index, have all
been proposed to be used to help differentiate pre-renal
injury from hypoxic/ischemic AKI. Hypoxic/ischemic AKI
is also called vasomotor nephropathy and/or acute tubular
necrosis, since there are early intense vascular constrictions
followed by later tubular injury. Renal tubules are working
appropriately in pre-renal injury and are able to conserve
salt and water appropriately, whereas, in vasomotor
nephropathy, the tubules have progressed to irreversible
injury and are unable to conserve salt appropriately [1–5,
29, 30]. During pre-renal injury the tubules respond to
decreased renal perfusion by appropriately conserving sodium
and water such that the urine osmolality is greater than 400–
500 mosmol/l, urine sodium is less than 10–20 mEq/l, and the
fractional excretion of sodium is less than 1%.

Because the renal tubules in newborns and premature
infants are relatively immature compared with those in
older infants and children, the corresponding values
suggestive of renal hypoperfusion are urine osmolality
greater than 350 mosmol/l, urine sodium less than 20–
30 mEq/l, and fractional excretion of sodium of less than
2.5% [29, 30]. When the renal tubules have sustained
injury, they cannot conserve sodium and water appropri-
ately, so that the urine osmolality is less than 350 mosmol/l,
the urine sodium is greater than 30–40 mEq/l, and the
fractional excretion of sodium is greater than 2.0%. The use
of these values to differentiate pre-renal injury from ATN
requires that the patient have normal tubular function
initially. However, newborns with immature tubules and
children with pre-existing renal disease or salt-wasting renal

adrenal disease, as well as other diseases, might have pre-
renal injury with urinary indices suggestive of ATN but
might, in reality, have pre-renal injury. Thus, it is essential
that we consider the state of the function of the tubules
before the potential onset that might precipitate vasomotor
nephropathy/ATN, so that ascribing pre-renal injury to
vasomotor nephropathy/ATN does not occur. In addition, the
fractional excretion of sodium is often difficult to interpret in
patients who have received diuretic therapy.

Intrinsic renal disease

Hypoxic/ischemic acute kidney injury

Hypoxic/ischemic AKI is characterized by early vasocon-
striction followed by patchy tubular necrosis. Recent
studies suggest that the vasculature of the kidney may play
a role in acute injury and chronic injury as well, and the
endothelial cell has been identified as a target of injury.
Peritubular capillary blood flow has been shown to be
abnormal during reperfusion, and there is also loss of
normal endothelial cell function in association with dis-
torted peritubular pericapillary morphology and function
[31, 32]. The mechanism of cellular injury in hypoxic/
ischemic AKI is not known, but alterations in endothelin or
nitric oxide regulation of vascular tone, ATP depletion and
alterations in the cytoskeleton, changes in heat shock
proteins, initiation of the inflammatory response and the
generation of reactive oxygen and nitrogen molecules may
each play a role in cell injury [31–48].

Nitric oxide is a vasodilator produced from endothelial nitric
oxide synthase (eNOS), and nitric oxide helps regulate vascular
tone and blood flow in the kidney [37, 38]. Recent studies
suggest that loss of normal eNOS function occurs following
ischemic/hypoxic injury which could precipitate vasoconstric-
tion [37]. In contrast, inducible nitric oxide synthase (iNOS)
activity increases following hypoxic/ischemic injury, and
iNOS can participate in the generation of reactive oxygen
and nitrogen molecules. Inducible nitric oxide synthase, with
the generation of toxic nitric oxide metabolites including
peroxynitrate, has been shown to mediate tubular injury in
animal models of acute kidney injury [38, 39]. Endothelin
(ET) peptides are potent vasoconstrictors that have also been
shown to play a role in the pathogenesis of AKI in animal
models [40–42]. In rat models of AKI, circulating levels of
endothelin-1 and tissue expression of endothelin-1 protein
levels was substantially increased, while ET(A) and ET(B)
receptor gene expression was also increased after ischemic
injury [41]. Endothelin receptor agonist for the A receptor
have been shown to be shown to decrease AKI in animal
models [42]. Thus, alterations in the balance of vasoconstric-
tive and vasostimulatory stimuli are likely to be involved in
the pathogenesis of hypoxic/ischemic AKI.
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An initial response to hypoxic/ischemic AKI is ATP
depletion, which leads to a number of detrimental biochemical
and physiologic responses, including disruption of the normal
cytoskeletal organization with loss of the apical brush border
and loss of polarity with Na+K+ATPase localized to the apical
as well as the basolateral membrane [43]. This has been
shown in several animal models of AKI, and it has also been
shown in human renal allografts that loss of polarity with
mislocation of Na+K+ATPase to apical membrane contrib-
utes to kidney dysfunction in transplanted kidneys [44].
Reactive oxygen molecules are also generated during
reperfusion and can contribute to tissue injury [34]. While
tubular cells and endothelial cells are susceptible to injury by
reactive oxygen molecules, studies have shown that endo-
thelial cells are more sensitive to oxidant injury than tubular
epithelial cells are [35]. Other studies have shown an
important role for heat shock protein in modifying the renal
response to ischemic injury as well as playing a role in
promoting recovery of the cytoskeleton following AKI [45].

In children with multiorgan failure, the systemic inflam-
matory response is thought to contribute to AKI as well as
other organ dysfunction by the activation of the inflamma-
tory response, including increased production of cytokines
and reactive oxygen molecules, activation of polymorpho-
nuclear leukocytes (PMNs), and increased expression of
leukocyte adhesion molecules [46]. Reactive oxygen
molecules can be generated by several mechanisms includ-
ing activated PMNs, which may cause injury by the
generation of reactive oxygen molecules including super-
oxide anion, hydrogen peroxide, hydroxyl radical, hypo-
chlorous acid, and peroxynitrite, or by the release of
proteolytic enzymes. Myeloperoxidase from activated
PMNs converts hydrogen peroxide to hypochlorous acid,
which may react with amine groups to form chloramines;
each of these can oxidize proteins, DNA, and lipids,
resulting in substantial tissue injury [34, 47]. Leukocyte
endothelial cell adhesion molecules have been shown to be
unregulated in ATN, and administration of anti-adhesion
molecules can substantially decrease renal injury in animal
models of ATN [36]. As described below, several animal
models have shown that interference with the inflammatory
response may be the future therapy for hypoxic/ischemic
AKI. Studies of humans with AKI have demonstrated an
increased evidence of oxidation of proteins reflecting
oxidant stress [48].

In the past it was thought that recovery from hypoxic/
ischemic and nephrotoxic AKI was complete with return of
renal function to normal, but recent studies have shown that
recovery may be partial and that the patient is at higher risk
for later chronic kidney disease [31]. In addition, hypoxic/
ischemic insults can result in physiologic and morphological
alterations in the kidney that can lead to kidney disease at a
later time [49].

Nephrotoxic acute kidney injury

Medications associated with AKI, at least in part due to
toxic tubular injury, include aminoglycoside antibiotics,
intravascular contrast media, amphotericin B, chemothera-
peutic agents such as ifosfamide and cisplatin, acyclovir,
and acetaminophen, while other medications have been
implicated less commonly. Aminoglycoside nephrotoxicity
typically presents with nonoliguric AKI, with urinalysis
showing minimal urinary abnormalities. The incidence of
aminoglycoside antibiotic nephrotoxicity is related to the
dose and duration of the antibiotic therapy as well as the
level of renal function prior to the initiation of aminoglyco-
side therapy. The etiology is thought to be related to the
lysosomal dysfunction of proximal tubules and is reversible
once the aminoglycoside antibiotics have been discontin-
ued. However, after the aminoglycoside has been discon-
tinued, the serum creatinine may continue to increase for
several days due to ongoing tubular injury from continued
high parenchymal levels of the aminoglycoside. Cisplatin,
ifosfamide, acyclovir, amphotericin B, and acetaminophen
are also nephrotoxic and may precipitate AKI. Several other
drugs have also been associated with AKI, but the
incidence of AKI with other drugs is less common.
Hemolysis and rhabdomyolysis from any cause can result
in sufficient hemoglobinuria or myoglobinuria to induce
tubular injury and precipitate AKI. The mechanisms of
injury are complex but may be related to vasoconstriction,
precipitation of the pigments in the tubular lumen, and/or
heme-protein–induced oxidant stress [50].

Uric acid nephropathy and tumor lysis syndrome

Children with acute lymphocytic leukemia and B-cell
lymphoma are at the highest risk of AKI due to uric acid
nephropathy and/or the tumor lysis syndrome [51, 52].
Although the pathogenesis of uric acid nephropathy is
complex, a potentially important mechanism of injury is
related to the precipitation of crystals in the tubules, which
obstruct urine flow, or in the renal microvasculature, which
obstruct renal blood flow [51, 52]. A common cause of
AKI in leukemia is the development of the tumor lysis
syndrome during chemotherapy [51–53]. Therapy with
allopurinol will limit the increased excretion of uric acid
with chemotherapy, but allopurinol therapy will result in
markedly increased excretion of uric acid precursors,
including hypoxanthine and xanthine, and precipitate
xanthine nephropathy [51, 54]. Xanthine is less soluble
than uric acid, and precipitation of hypoxanthine and
xanthine may play a role in the development of AKI during
the tumor lysis syndrome [54]. Rasburicase is a recombi-
nant form of urate oxidase that catalyzes uric acid to
allantoin, which is five times more soluble than uric acid
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[55]. Rasburicase has been shown to be effective and well
tolerated in the prevention of renal failure in pediatric
patients with tumor lysis syndrome [55]. AKI during tumor
lysis syndrome can also result from extreme hyperphos-
phatemia from rapid breakdown of tumor cells and the
precipitation of calcium phosphate crystals [56].

Acute interstitial nephritis

Acute interstitial nephritis (AIN) may cause renal failure as
a result of a reaction to a drug or due to idiopathic AIN.
Children with AIN may have rash, fever, arthralgias,
eosinophilia, and pyuria with or without eosinophiluria.
Medications commonly associated with AIN include
methicillin and other penicillin analogs, cimetidine, sulfo-
namides, rifampin, nonsteroidal anti-inflammatory drugs,
and proton pump inhibitors, whereas other drugs have been
associated with AIN less commonly [57]. AIN associated
with nonsteroidal anti-inflammatory drugs may also present
with high-grade proteinuria and nephrotic syndrome.
Specific therapy for AIN includes withdrawal of the drug
implicated in causing the AIN. In addition, corticosteroids
may aid in the resolution of the renal failure [57].

Rapidly progressive glomerulonephritis

Any form of glomerulonephritis in its most severe degree
can present with AKI and RPGN. The clinical features
include hypertension, edema, hematuria that is frequently
gross, and a rapidly rising levels of blood urea nitrogen
(BUN) and creatinine. The characteristic pathological
finding in RPGN is extensive crescent formation. RPGN
due to postinfectious glomerulonephritis typically does not
lead to CKD, while other glomerulonephritides, such as
antineutrophil cytoplasmic antibody (ANCA)-positive glo-
merulonephritis, Goodpasture’s syndrome, and idiopathic
RPGN, typically present with AKI and may quickly evolve
into CKD, with or without therapy. Serological tests
including an antinuclear antibody (ANA), ANCA, anti–
glomerular basement membrane (GBM) titers, and comple-
ment studies are required to evaluate the etiology of the
RPGN. Because specific therapy will depend on the
pathological findings, a biopsy should be performed
relatively quickly when a child presents with clinical
characteristics suggestive of RPGN.

Vascular insults

Cortical necrosis as a cause of AKI is much more common
in young children, particularly in neonates. Cortical
necrosis is associated with hypoxic/ischemic insults due to
perinatal anoxia, placenta abruption, and twin–twin or
twin–mother transfusions, with resultant activation of the

coagulation cascade. Children and newborns with cortical
necrosis usually have gross or microscopic hematuria and
oliguria and may have hypertension as well. In addition to
laboratory features of elevated levels of BUN and creatinine,
thrombocytopenia may also be present, due to the microvas-
cular injury. Radiographic features include normal findings
of renal ultrasound in the early phase, and ultrasound in the
later phases may show that the kidney has undergone
atrophy and has substantially decreased in size. The
prognosis for cortical necrosis is much worse than that for
ATN. Children with cortical necrosis may partially recovery
or not recover at all. HUS is a common cause of AKI in
children and leads to substantial morbidity and mortality
rates and long-term complications that may not become
apparent until adulthood [58]. While an important cause of
AKI in children, HUS will not be further discussed here, as a
review of HUS has recently been published [58].

Obstructive uropathy

Obstruction of the urinary tract can cause acute kidney injury
if the obstruction occurs in a solitary kidney, if it involves the
ureters bilaterally, or if there is urethral obstruction. Obstruc-
tion can result from congenital malformations such as
posterior urethral valves, bilateral ureteropelvic junction
obstruction or bilateral obstructive ureteroceles. Acquired
urinary tract obstruction can result from passage of kidney
stones or, rarely, from tumors. It is important to evaluate for
obstruction, since the management is to relieve the obstruction
promptly.

Management of acute kidney injury in children

Preventive measures

Two studies from different geographic regions of Nigeria
demonstrated that the most common cause of AKI in
children was volume depletion and that the AKI was due to
preventable cause [59, 60]. Since dialytic resources were
scare, the mortality rate in these studies was quite high [59,
60]. Thus, on a global scale, the prevention of AKI is likely
to have a larger impact on mortality rates than other
measures.

Intravenous infusion of theophylline, given to severely
asphyxiated neonates within the first hour of birth, was
associated with improved fluid balance, creatinine clearance,
and reduced serum creatinine levels and had no effects on
neurological and respiratory complications [61–63]. Adenosine
is a potent vasoconstrictor that is released from the catabolism
of ATP during ischemia; the potential mechanisms that
theophylline could protect from AKI could be the blocking
of the adenosine receptor. Other studies of asphyxiated

258 Pediatr Nephrol (2009) 24:253–263



neonates also demonstrated improved renal function and
decreased excretion of beta-2 microglobulin in neonates given
theophylline within one hour of birth [61–63]. However, the
clinical significance of the improved renal function was not
clear, and the incidence of persistent pulmonary hypertension
was higher in the neonates who had received theophylline
group. Additional studies are needed to determine the
significance of these findings and the potential side effects
of theophylline.

Diuretics and dopamine receptor agonist

Diuretics and ‘renal-dose’ dopamine are commonly used to
prevent or limit AKI. There have been several clinical
studies using mannitol, diuretics, and ‘renal-dose’ dopamine
for AKI [64–71]. The stimulation of urine output eases
management of AKI, but conversion of oliguric to non-
oliguric AKI has not been shown to alter the course of renal
failure [64]. Furosemide may increase the urine flow rate to
decrease intratubular obstruction and will inhibit Na-K-
ATPase, which will limit oxygen consumption in already
damaged tubules with a low oxygen supply. In a randomized
controlled trial, two groups of adult patients with AKI
requiring dialysis were given furosemide therapy or placebo;
diuresis was achieved in a significantly shorter time in the
group that received furosemide than in the group that had
received placebo [64]. However, there was not a difference
in the number of dialysis sessions, time on dialysis, or
patients’ survival [64]. In patients who do respond to diuretic
therapy with an increase in urine output, continuous
infusions may be associated with less toxicity than bolus
administration [65]. A retrospective study actually demon-
strated that the use of diuretics in AKI was associated with
adverse outcomes [66]. Since high doses of furosemide can
cause ototoxicity, continued use in individual patients with
AKI needs to take into consideration the risks and potential
benefits or lack of benefits.

The use of ‘renal-dose’ dopamine (0.5 μg/kg per minute
to 3-5 μg/kg per minute) to improve renal perfusion
following an ischemic insult has become very common in
intensive care units. While dopamine increases renal blood
flow by promoting vasodilatation and may improve urine
output by promoting natriuresis, there have been no
definitive studies to demonstrate that low doses of
dopamine are effective in decreasing the need for dialysis
or improve survival times in patients with AKI [67–71]. In
fact, a placebo controlled randomized study of low doses of
dopamine in adult patients demonstrated that low doses
were not beneficial and did not confer clinically significant
protection from renal dysfunction [67]. Other studies have
demonstrated that ‘renal-dose’ dopamine is not effective in
the therapy of AKI, and one study demonstrated that low
doses worsened renal perfusion and renal function [69].

Three separate meta-analyses have shown no benefit of
dopamine in AKI [68, 70, 71]. Fenoldopam is a potent,
short-acting, selective, dopamine-1 receptor agonist that
decreases vascular resistance while increasing renal blood
flow [72]. A recent meta-analysis of 16 trials of fenoldopam
concluded that therapy with fenoldopam decreased the
incidence of acute kidney injury, decreased the need for
renal replacement therapy, decreased ICU stay and de-
creased the number of deaths from any cause [73].
Fenoldopam has been used in a few children with acute
kidney injury, including two children receiving therapy
with a ventricular-assist device as a bridge to cardiac
transplantation; therapy with fenoldopam was thought to
avoid the need for renal replacement therapy in one child
[74]. Additional studies utilizing fenoldopam need to be
performed on children with acute kidney injury.

Therapies to decrease injury and promote recovery

While there is no current specific therapy to prevent renal
injury or promote recovery in human ATN, several
potential therapies are being studied, and future manage-
ment of AKI may also include antioxidant, anti-adhesion
molecule therapy and the administration of vascular
mediators or mesenchymal stem cells to prevent injury
and/or promote recovery [35, 36, 75–77]. Several different
therapies have been shown to prevent, decrease or promote
recovery in animal models of AKI. Melanocyte-stimulating
hormone (MSH) has anti-inflammatory activity and has
been shown to protect renal tubules from injury [75]. In
other animal models of AKI, post-ischemic infusion of
growth factors, including insulin-like growth factor-1 (IGF-
1), epidermal growth factor, and hepatocyte growth factor,
resulted in accelerated recovery of renal function, less
severe histological alterations and decreased mortality rates
[75–77]. Scavengers of free radicals and reactive oxygen
and nitrogen molecules, as well as anti-adhesion molecules,
have been shown to decrease the degree of injury in animal
models of AKI [77]. Recently, very interesting studies have
also demonstrated that multipotent mesenchymal stem cells
(MSCs) may have a role in promoting recovery from AKI
in animal models [78].

Despite the promise of animal models of intervention in
AKI, clinical studies in humans have been largely dis-
appointing, including studies that utilized anaritide (atrial
natriuretic peptide) and IGF-1 [79, 80]. Since therapy in
these studies was initiated when renal failure was well
established, it is likely that the opportunity to intervene and
have an impact on the recovery from AKI had been missed
[81, 82]. As mentioned previously, the development and
testing of interventions for AKI will require the develop-
ment of early biomarkers of injury that are much more
sensitive than serum concentrations of creatinine.
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Prognosis of acute kidney injury

The prognosis of AKI is highly dependent on the
underlying etiology of the AKI. Children who have AKI
as a component of multisystem failure have a much higher
mortality rate than children with intrinsic renal disease such
as HUS, RPGN, and AIN. Recovery from intrinsic renal
disease is also highly dependent on the underlying etiology
of the AKI. Children with nephrotoxic AKI and hypoxic/
ischemic AKI usually recover normal renal function. In the
past it has been thought that such patients are at a low risk
for late complications, but several recent studies have
demonstrated that chronic kidney disease can evolve from
AKI [83–88]. Children who have suffered substantial loss
of nephrons, as in HUS or RPGN, are at risk for late
development of renal failure long after the initial insult has
occurred. Several studies in animal models have docu-
mented that hyperfiltration of the remnant nephron may
eventually lead to progressive glomerulosclerosis of the
remaining nephrons. Thus, children who have had cortical
necrosis during the neonatal period and whose renal
function has recovered, or children with an episode of
severe Henoch–Schönlein purpura or HUS, are clearly at
risk for the late development of renal complications. Such
children need life-long monitoring of their renal function
and blood pressure, and life-long urinalyses.

As described above, it has been thought that acute
kidney injury due to hypoxic/ischemic and nephrotoxic
insults were reversible, with a return of renal function to
normal. However, recent studies have demonstrated that
hypoxic/ischemic and nephrotoxic insults can lead to
physiologic and morphologic alterations in the kidney that
may lead to kidney disease at a later time [50]. Studies of
adults demonstrate that CKD may evolve from AKI [83,
84]. Thus, acute kidney injury from any cause can be a
concern for later kidney disease. Importantly, acute kidney
injury is likely to be especially deleterious when the kidney
has not yet grown to adult size and/or before the full
complement of nephrons have developed. Since nephro-
genesis is not complete until approximately 34 weeks’
gestation, acute kidney injury during this interval might
lead to a decreased number of nephrons, and, indeed,
studies have suggested that acute kidney injury during
nephrogenesis results in decreased numbers of nephrons
and subsequent glomerulomegaly [86]. Acute kidney injury
in the full-term neonate is also associated with later kidney
disease [88]. In one study of six older children with a
history of AKI not requiring dialysis in the neonatal period,
only two were healthy, three had chronic renal failure and
one was on dialysis. Studies on older children have also
shown that AKI leads to CKD in a higher percentage of
children than was previously appreciated [85]. In a
prospective study of renal insufficiency in children under-

going bone marrow transplantation, the incidence of acute
renal insufficiency was high and was predictive of chronic
renal insufficiency. Of those who survived, 11% developed
chronic kidney disease, and AKI was the sole predictor of
chronic kidney disease [89]. Thus, children with a history
of AKI from any cause need long-term follow-up.

Questions (answers appear following the reference list)

1. Epidemiology studies of AKI in children has shown
that

a. the incidence of AKI is decreasing: true or false
b. genetic factors may play a role in the susceptibility

to AKI: true or false
c. hypoxic/ischemic AKI is a rare cause of AKI in

children: true or false
d. nonsteroidal anti-inflammatory therapy is a risk

factor for AKI in newborns: true or false
2. Diagnosis and etiology of AKI in children

a. the definition of AKI in children is well established:
true or false

b. the serum creatinine is a sensitive marker of AKI:
true or false

c. in utero exposure to ACE inhibitors is associated
with AKI in neonates: true or false

d. AKI in hospitalized children may be the result of
multiple etiologies: true or false

e. urinary sodium concentration is a reliable indicator
of pre-renal versus hypoxic/ischemic AKI in pre-
mature newborns: true or false

3. Hypoxic/ischemic AKI

a. alterations in blood flow are not thought to play a
role in hypoxic/ischemic AKI: true or false

b. reactive oxygen molecules generated by activated
PMNs may play a role in hypoxic/ischemic ATN:
true or false

c. ATP depletion is an early response to hypoxic/
ischemic AKI: true or false

d. hypoxic/ischemic AKI is always reversible and has
no long-term consequences: true or false

4. Management of AKI in children

a. diuretic therapy in AKI shortens hospital stay,
decreases the need for dialysis therapy and
decreases mortality rates: true or false

b. ‘renal-dose’ dopamine therapy has not been shown
to be effective in adult patients: true or false

c. prevention of AKI is important on a global scale in
lowering the number of deaths from AKI: true or
false
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5. Prognosis of AKI

a. neonates, infants, children and adolescents who
have recovered from AKI do not need long-term
follow up: true or false

b. AKI that occurs before nephrogenesis is complete
may lead to later CKD: true or false
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Answers:

1. a. False
b. True
c. False
d. True

2. a. False
b. False
c. True
d. True
e. False

3. a. False
b. True
c. True
d. False

4. a. False
b. True
c. True

5. a. False
b. True
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