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Abstract Many different drugs and agents may cause
nephrotoxic acute kidney injury (AKI) in children. Predis-
posing factors such as age, pharmacogenetics, underlying
disease, the dosage of the toxin, and concomitant medica-
tion determine and influence the severity of nephrotoxic
insult. In childhood AKI, incidence, prevalence, and
etiology are not well defined. Pediatric retrospective studies
have reported incidences of AKI in pediatric intensive care
units (PICU) of between 8% and 30%. It is widely
recognized that neonates have higher rates of AKI,
especially following cardiac surgery, severe asphyxia, or
premature birth. The only two prospective studies in
children found incidence rates of 4.5% and 2.5% of AKI
in children admitted to PICU, respectively. Nephrotoxic
drugs account for about 16% of all AKIs most commonly
associated with AKI in older children and adolescents.
Nonsteroidal anti-inflammatory drugs (NSAIDs), antibiot-
ics, amphotericin B, antiviral agents, angiotensin-converting
enzyme (ACE) inhibitors, calcineurin inhibitors, radiocon-
trast media, and cytostatics are the most important drugs to
indicate AKI as significant risk factor in children. Direct
pathophysiological mechanisms of nephrotoxicity include
constriction of intrarenal vessels, acute tubular necrosis,
acute interstitial nephritis, and—more infrequently—tubular
obstruction. Furthermore, AKI may also be caused indirectly
by rhabdomyolysis. Frequent therapeutic measures consist of
avoiding dehydration and concomitant nephrotoxic medica-
tion, especially in children with preexisting impaired renal
function.
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Abbreviations
AKI acute kidney injury
BMT bone marrow transplantation
COX cyclooxygenase
CyA cyclosporine A
GFR glomerular filtration rate
HSCT hematopoietic stem cell transplantation
MTX methotrexate
NSAIDs nonsteroidal anti-inflammatory drugs
PDA patent ductus arteriosus
PICU pediatric intensive care unit
RCT randomized controlled trial

Introduction

Many different drugs and agents are currently being taken
into consideration as the causality of nephrotoxic acute
kidney injury (AKI) in children. Predisposing factors such
as age, pharmacogenetics, underlying disease, dosage of the
toxin, and concomitant medication determine and influence
the severity of nephrotoxic insult. The culprit toxins are
predominantly drugs, but exogenous (ethylene glycol,
methylene) and endogenous (hemoglobin, myoglobin)
substances and toxins from animals play a role as well.
Throughout this teaching article, incidence, pathophysio-
logical mechanisms, and treatment options are discussed in
general followed by characteristics of problematic drugs.
Because of the paucity of multicenter studies exploring
AKI in children, previously conceived literature of AKI in
adults ought to be considered.
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Tumor lysis syndrome is not discussed. However,
calcineurin inhibitor toxicity is briefly mentioned, as it has
been respectively inclusive to the topic throughout multiple
publications [1–8].

Definition and incidence

Most authors define AKI as a sudden decline in glomerular
filtration rate (GFR) mirrored by doublings of serum
creatinine and azotemia. Because a precise clinical defini-
tion remains elusive, studies comparing epidemiology and
outcome can be problematic (see Mehta et al. [9] for
review). For oncological patients being treated with
cytotoxic drugs, fractionated total body irradiation, and
stem cell transplantation, AKI is due to multiple risk
factors, with nephrotoxicity being one of the most signif-
icant. In this group of patients, a regimen-related toxicity
score, as proposed by Bearman et al. [10], is often used.
This score is defined as follows: grade 1—an increase in
creatinine up to twice the baseline; grade 2—an increase in
creatinine above twice the baseline but not requiring
dialysis; grade 3—renal replacement therapy required;
grade 4—fatal toxicity.

In adults, the overall incidence of AKI was found to be
209 per million population (0.02%). This figure was most
likely generated by hypoxic/ischemic and nephrotoxic
insults [11, 12]. Other studies report incidence rates of
between 7% and 25% among critically ill adults [13–16].
This broad range is partly due to the many different
coexisting definitions of AKI currently used, as mentioned
above.

Community-based statistics estimate the incidence of
AKI attributed to drug nephrotoxicity as being between 0%
and 7% [17, 18] and the incidence of in-hospital AKI
attributed to drug nephrotoxicity in adults at about 20% of
all AKI [19–23]. Antibiotics (3–11%), angiotensin-convert-
ing enzyme (ACE) inhibitors (0.5–7%), NSAIDs (3–22%),
and contrast media (2–12%) were noted as the most
recurrent offenders. Depending on the publication date of
the statistics, an increase in ACE inhibitors and a decrease
in contrast media as causing agents was found during recent
years (see de Broe et al. [24] for details). The trend in
claiming higher frequencies of NSAIDs and ACE inhibitors
as causes for drug-induced AKI was confirmed by a survey
in 2001 by Ronco et al. [25]. It has been observed that
hospital-acquired AKI is usually associated with one of
three renal insults: a prerenal event, exposure to nephrotox-
ins, or sepsis [11]. Nephrotoxins, alone or in combination,
contribute to at least 25% of all cases of hospital-acquired
AKI [26]. In patients treated for oncological diseases, AKI

was found to be between 0% and 40%, depending on the
cytotoxic regimen used [10, 27–35].

In childhood AKI, incidence, prevalence, and etiology
are not well defined. Pediatric retrospective studies have
reported incidences of AKI in pediatric intensive care units
(PICU) of between 8% and 30% [36–39]. It is widely
recognized that neonates have higher rates of AKI,
especially following cardiac surgery, severe asphyxia, or
premature birth [37, 40–44]. The only two prospective
studies in children admitted to PICU found AKI incidence
rates of 4.5% and 2.5%, respectively [45, 46]. In the study
of Bailey et al. [45] (excluding neonates), the most
common admission diagnoses in AKI were hemolytic
uremic syndrome (18.2%), oncologic pathologies (18.2%),
and cardiac surgery (11.4%). Although these authors could
demonstrate by univariate analysis that nephrotoxic drugs
were used more often in children with AKI, they could not
indicate nephrotoxic drugs as a risk factor for AKI by
multivariate analysis. A 2005 report from Houston, Texas,
USA, stated the most common causes of AKI in hospital-
ized children were renal ischemia (21%), pharmacologic
agents (16%), and sepsis (11%). Primary renal disease
accounted for only 7% of all cases [38]. Furthermore, this
study associated nephrotoxic medications with AKI in
primarily older children and adolescents. The frequency of
AKI in pediatric patients following hematopoietic stem cell
transplantation (HSCT) is between 6% and 50%, of whom
5–10% require renal replacement therapy [47–50].

Drug-induced AKI: mechanisms and clinical
significance

Table 1 illustrates a classification of drugs known to cause
AKI regarding pathophysiologic mechanisms (from Porter
et al. in [24]). The following text reviews in more depth the
aspects of the most common substances at risk for causing
AKI in children.

NSAIDs

NSAIDs possess antipyretic, analgesic, and anti-inflammatory
effects. They are frequently used in children and have
numerous therapeutic indications; for example, in the
treatment of fever, postoperative pain, and inflammatory
disorders such as juvenile idiopathic arthritis and Kawasaki
disease. Their major mechanism of action is through
inhibition of prostaglandin biosynthesis by blockade of
cyclooxygenase (COX). In euvolemic states, prostaglan-
dins have a negligible effect on renal hemodynamics. In
states of volume depletion, there is upregulation of the renin–
angiotensin system as well as increased catecholamine
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release that, in addition to producing renal vasoconstriction,
stimulates renal prostaglandin production. These prostaglan-
dins counteract the vasoconstrictor effect by decreasing
preglomerular resistance and thereby maintaining renal
perfusion and glomerular filtration. This protective effect is
inhibited by the blockade of prostaglandin synthesis by
NSAIDs. The disposition of most NSAIDs has been mainly
studied in infants older than 2 years of age [51]. Next to
paracetamol, it is likely that NSAIDs are the most often
prescribed substances in pediatrics today.

Although AKI is a well-known adverse effect of these
drugs, the incidence of nephrotoxicity due to NSAIDs,
especially in children, is unknown. It is probable that these
substances carry a good risk–benefit ratio when taken under
adequate supervision. However, when taken continually by
the elderly or individuals with comorbid conditions
(dehydrated children), the frequency of adverse reaction
rises dramatically.

The vast majority of healthy children who ingest
therapeutic doses of NSAIDs for a limited duration tolerate
them without any significant adverse effects. However, the

risk of renal toxicity potentially increases in situations
where there is stimulation of the renin–angiotensin system;
for example, with volume depletion or preexisting chronic
renal disease. Some case reports of AKI following NSAID
administration have been published. In most of these cases,
dehydration played an important role [52–54]. But even
without concomitant treatment or dehydration, AKI follow-
ing the intake of naproxen, diclofenac, ibuprofen, dipyrone,
ketorolac, and paracetamol has become documented and
published [55, 56]. The onset of AKI after the intake of
medication ranged from 1 to 5 days. Oligo-/anuric and
nonoliguric AKI has been documented and published.
Ultrasound showed large kidneys with hyperechoic paren-
chyma, and urine analysis revealed no specific changes that
would allow distinction from other causes of AKI. Though
kidney biopsies in two out of three patients showed normal
results, one out of three revealed interstitial inflammation. All
documented patients showed good recovery of renal function.
Also, AKI in three children treated with the COX-2 inhibitor
rofecoxib has been recently published. Evidently, all children
were managed without renal replacement therapy. However, a
renal biopsy done in one child showed acute interstitial
nephritis [57]. The COX-2 inhibitor celecoxib has been
reportedly responsible for 24% of adult AKI [58, 59].

In neonates the therapeutic and/or preventive use of
ibuprofen and indomethacin for closure of patent ductus
arteriosus (PDA) in preterm and/or low birth weight infants
was analyzed in a Cochrane review. It showed that
ibuprofen reduced the risk of oliguria. It also demonstrated
that a prolonged course of indomethacin was associated
with a decreased incidence of renal function impairment, as
evidenced by a lower proportion of infants having
diminished urine output [60–62]. Currently, several cases
of severe and sometimes irreversible renal insufficiency
have been documented in neonates exposed to indometh-
acin prenatally or in the first days of life for treatment of
PDA [63, 64].

In adults treated with Mesalazine because of inflamma-
tory bowel disease, nephrotoxicity is reportedly evident in
the treatment of one out of every 150 adult patients.
Although more than 30 cases in adults have been described
in the literature, only three cases of pediatric patients
younger than 16 years have been published (see Biervliet et
al. [65] for details). There is no relation to dosage or type of
Mesalazine used; the underlying mechanism was interstitial
nephritis leading to acute or chronic renal failure.

In summary, NSAIDs- and COX-2-inhibitor-induced
renal failure in children is rare. However, if found, it is
usually reversible after drug discontinuation. Caution
should be taken when NSAIDs are administered to
individuals with dehydration, preexisting renal problems,
or in combination with other potentially nephrotoxic drugs.

Table 1 Classification of various drugs based on pathophysiologic
categories of acute kidney injury

Pathophysiology Drugs known to cause acute kidney injury

Prerenal failure NSAIDs, ACE inhibitors, cyclosporine A
(CyA), norepinephrine, AT2-receptor
antagonists, diuretics, interleukins, cocaine,
mitomycin C, tacrolimus, estrogen, quinine

Acute tubular
necrosis

Antibiotics: aminoglycosides, cephalosporins,
amphotericin B, rifampicin, vancomycin,
foscarnet, pentamidine
NSAIDs, glaphenin, contrast media,
acetaminophen, CyA, cisplatinum, i.v.
immunoglobulin, dextran, maltose, sucrose,
mannitol, heavy metals

Acute interstitial
nephritis

Antibiotics: ciprofloxacin, methicillin,
penicillin G, ampicillin, cephalosporins,
oxacillin, rifampicin
NSAIDs, glaphenin, acetylsalicylic acid
(ASA), fenoprofen, naproxen,
phenylbutazone, piroxicam, tolmetin,
zomepirac, contrast media, sulfonamides,
thiazides, phenytoin, furosemide, allopurinol,
cimetidine, omeprazole, phenindione

Tubular obstruction Sulfonamides, methotrexate, methoxyflurane,
glaphenin, triamterene, acyclovir, ethylene
glycol, protease inhibitors

Hypersensitivity
angiitis

Penicillin G, ampicillin, sulfonamides

Thrombotic
microangiopathy

Mitomycin C, CyA, oral contraceptives

From reference [24]
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Antibiotics, amphotericin B, and antiviral agents

Aminoglycosides and vancomycin

Nephrotoxicity is a well known side effect of all amino-
glycosides. Acute tubular necrosis is the most frequent
mechanism of toxicity, but different patterns of tubular
dysfunction have been described as well [66]. Aminoglyco-
sides are not metabolized and eliminated by glomerular
filtration and are partially absorbed into proximal tubular
cells by megalin-dependent endocytosis. This uptake is
saturable. In the lysosomes, aminoglycosides bind to
phospholipids, leading to inhibition of phospholipase
activity and consequently to phospholipid accumulation
within the proximal tubular cell. Although the exact
mechanism of tubular cell death caused by phospholipid
accumulation has never been clearly established, there is a
good correlation between the extent of phospholipidosis
and toxicity induced by aminoglycosides. Furthermore,
aminoglycosides induce alterations at the basolateral mem-
brane and mitochondria, and they seem to enhance the
generation of free radicals and lipid peroxidation in renal
cortex. They also may alter glomerular function through
mesangial cell contraction and may stimulate mesangial cell
proliferation and apoptosis with no overt net change in total
cell number [67].

Thirty years ago, the incidence of significant reduction
of GFR present in seriously ill adult patients was found to
be between 5% and 9% [68] and to rise with advanced age
[69–71]. Neonates are at higher risk for aminoglycoside-
induced nephrotoxicity. It is published that drug dosage,
timing, duration of administration, dosing interval, preex-
isting renal disease, volume depletion, hepatic dysfunction,
sepsis, and concomitant nephrotoxic and diuretic drugs may
increase nephrotoxicity of aminoglycosides, but some of
the published data are conflicting [24, 72]. It is especially
not clear whether dosing only once daily decreases the risk
of nephrotoxicity. This question was addressed in children
by Uijtendaal et al. [73] in a randomized controlled trial
(RCT) that found equal effectiveness and nephrotoxicity of
gentamicin. In contrast in a meta-analysis of children with
cystic fibrosis, Smyth et al. [74] found decreased toxicity in
once-a-day treatment. As published by Verpooten et al.,
neither monitoring drug serum peak levels nor adjusting
dosage (pharmacokinetic dosing) had any effect on neph-
rotoxicity [75].

A recent Cochrane analysis by Rao et al. [76] found that
in neonates, there is insufficient evidence from available
RCTs to conclude whether a regimen of once a day or
multiple doses a day of gentamicin is superior in treating
proven neonatal sepsis. However, data suggests that
pharmacokinetic properties of a once-a-day regimen are
superior to multiple doses a day because it achieves higher

peak levels while avoiding toxic trough levels without
change in nephrotoxicity or auditory toxicity.

Beta (β)-lactam antibiotics comprise penicillins, cepha-
losporins, monobactams, clavulanic acid, and carbapenems.
Cephalosporins and carbapenems have been associated with
nephrotoxicity in humans [77, 78]. Nephrotoxic β-lactam
antibiotics cause acute proximal tubular necrosis with or
without oliguria. Significant renal toxicity, which has been
rare with penicillins and uncommon with cephalosporins, is
a greater risk with the penems. The true incidence of β-
lactam-antibiotics-induced AKI is unknown, as is how
often it occurs when the antibiotic is used as monotherapy
or in combination with other nephrotoxic drugs. Mecha-
nisms of injury include: (1) transport into the tubular cell
(mainly through the basolateral organic anion secretory
carrier), (2) acylation of target proteins causing respiratory
toxicity by inactivation of mitochondrial anionic substrate
carriers, and (3) lipid peroxidation [77]. Renal toxicity from
β-lactams may also result from hypersensitivity reactions.
In these cases, glucocorticoids have been used, as they may
improve recovery [79]. Cases of ceftriaxone-induced
hemolysis and nephrolithiasis complicated by AKI have
also been published [80–82]. In preterm neonates, the
administration of ceftazidime was associated with a greater
risk of acute kidney injury [83]. Ampicillin and aztreonam
combination therapy in neonates showed a lower renal
toxicity than in the group with concurrent administration of
oxacillin and amikacin [84]. There are no specific thera-
peutic options in β-lactam-induced AKI; hemolysis and
postrenal failure by stones need to be excluded, and there is
no evidence that hemodialysis will improve recovery.
“Judicious use of the drugs” [85] has become the most
important approach to decreasing β-lactam nephrotoxicity,
especially in neonates, where accurate determination of
dosage is required for drugs with low therapeutic index and
in patients with renal injury.

Macrolide antibiotics such as erythromycin, clarithro-
mycin, azithromycin, and dirithromycin may indirectly
cause AKI via enhancing calcineurin levels by inhibiting
cytochrome P-450 isoenzyme CYP 3A4 [86]. This needs to
be considered, especially in transplanted or nephrotic
patients on CyA or tacrolimus.

A number of additional anti-infective drugs that may
cause AKI in children include sulfonamides, trimethoprim-
sulfamethoxazole (TMP-SMX) and quinolones. Some of
these are of interest because of their use in treating
infectious complications in patients with HIV infections.
Systematic evaluation of renal side effects of these
substances in children are lacking, though aspects of
nephrotoxicity in adults are discussed in detail by Vaamonde
et al. [87].

Nephrotoxicity of amphotericin B has been a matter of
research for a long time. Despite its significant renal side
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effects, amphotericin B is still the drug of choice in the
treatment of severe systemic fungal infections, especially in
immunocompromised children. Its nephrotoxicity and
measures of prevention have been recently reviewed by
Koren and coworkers [88, 89] and Fanos et al. [90], but
studies in children remain scarce. In retrospective studies,
nephrotoxicity was found in 20–80% of adults and children
[91–95]. Of transplant patients receiving amphotericin B,
AKI was found to be in 0.5% of heart and/or lung
transplants and 31% of bone marrow transplants [96]. The
two major hypotheses for the pathogenesis of amphotericin-
B-induced AKI are: (1) direct effects of the drug on
ergosterol in the epithelial cell membranes and (2) renal
vasoconstriction due to increased vascular resistance.
Typically, intravenous administration results in an acute
decrease of GFR and transient oliguria followed by
polyuria. Unlike most other drug-induced nephrotoxicity,
most patients develop distal tubulopathy as well. The
pharmacokinetics of amphotericin B in children appears to
differ from that in adults because distribution volume is
smaller and the clearance rate is faster. As elimination half-
life appears to be inversely correlated with a patient’s age,
individualized dosing based on drug monitoring has been
recommended. But the age-dependent nephrotoxicity of
amphotericin B has not yet been addressed by studies. Risk
factors for amphotericin-induced AKI include cumulative
dose, treatment duration and dosing schedule, concomitant
therapy with diuretics or other nephrotoxic drugs, and
impaired GFR at baseline. As shown by a number of RCTs
in adults, the introduction of the lipid formulation of the
drug (lipid complex, colloidal dispersion, and liposomal
form) decreased nephrotoxicity enormously [97]. Goldman
et al. [88] proposed guidelines for preventing amphotericin-
induced nephrotoxicity by suggesting a saline infusion prior
to administration (10–15 ml/kg body weight) and use of
lipid formulations of amphotericin B in children with either
known side effects to conventional amphotericin B, reduced
GFR, or concomitant nephrotoxic medication.

Antiviral agents (acyclovir, valacyclovir, ganciclovir,
cidofovir, foscarnet, amantadine, and ribavirin) have be-
come increasingly available for clinical use, especially to
treat HIV infections. AKI is a significant and potentially
therapy-limiting side effect to some of them. Antiviral
agents have also been known to cause irreversible renal
damage in adults [98]. Antiviral drugs cause renal failure
through a variety of mechanisms. Direct renal tubular
toxicity has been found in the use of a number of these
medications, with unique effects on kidney epithelial cells.
These drugs include cidofovir, adefovir dipivoxil, tenofovir,
and acyclovir. Additionally, crystal deposition in the
kidneys may promote development of renal failure, as in
the use of acyclovir and the protease inhibitor indinavir.
However, it is unclear whether the pathogenesis of

acyclovir-induced AKI reflects an obstructive uropathy
from intratubular precipitation of acyclovir, a hemodynamic
response, or an immunologic, toxic, or hypersensitivity
reaction. Furthermore, these substances effect the tubular
transporters as well as tubule cells directly [99]. The exact
frequency of nephrotoxicity induced by antiviral drugs is
difficult to determine and not exactly known. AKI by
acyclovir infusion was found to be between 10% and 16%
in adults and 11% in children [100]. A recent Brazilian
study found AKI in 19.5% of the 41 children treated
intravenously. Their creatinine levels peaked in a mean time
of 7.1 days (ranging from 3 to 14 days). Recovery of renal
function, evaluated by the decrease of creatinine levels,
varied from 1 to 7 days (mean 3.6 days) [101]. Vomiero et
al. [102] reported AKI in three out of 17 children treated
with ceftriaxone and acyclovir combination therapy be-
cause of meningoencephalitis pointing out that the addition
of a second nephrotoxic drug aggravated the extent of
acyclovir’s renal injury. Risk factors again include volume
contraction, preexisting renal insufficiency, high dose, or
rapid bolus infusion. AKI in children caused by valacyclo-
vir and ganciclovir has not been published.

Foscarnet causes a reversible decrease in GFR in 20–
60% in adults [103–106]. Two mechanisms for renal
damage have been reported: acute tubular necrosis and
crystallization within glomerular capillaries with crescentic
nephritis. Hydration at the time of administration is thought
to reduce the incidence of AKI [72]. Foscarnet-induced
AKI is usually reversible, though temporary dialysis may
be required. Volume expansion was once again effective in
reducing the incidence of foscarnet nephrotoxicity [107]. In
an RCT by Reusser et al. [108] of foscarnet vs. ganciclovir
in the preemptive therapy of cytomegalovirus infection
after allogeneic stem cell transplantation, renal function
impairment was observed in five (5%) patients on foscarnet
vs. two (2%) patients on ganciclovir.

Published data regarding renal failure in antiretroviral
agents is scarce, especially in children. Some patients have
been reported with AKI attributed to ritonavir, but the risk
of AKI in this group of drugs appears low.

ACE inhibitors and angiotensin II receptor type 1
antagonists

The use of ACE inhibitors and angiotensin II receptor type
1 antagonists (AT2-receptor antagonists) has increased
dramatically over the last decade [109–115]. ACE inhib-
itors are the best documented treatment for delaying
progression of chronic nondiabetic renal diseases and
nephropathy in patients with type 1 diabetes. However,
some major concerns appear to restrict the widespread use
of these drugs, including acute interstitial nephritis associ-
ated with ACE inhibitors and a fall of GFR in some risk
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groups [116, 117]. In this educative article, we briefly
mention some aspects of AKI and ACE inhibitors and refer
to some reviews about ACE inhibition in adults and
children [114, 118].

The presence of AKI due to ACE-inhibitor-induced
interstitial nephritis has been described in few adult cases,
but an occurrence of this kind in children has yet to be
documented [119]. In contrast, however, prerenal AKI in
children with nephrotic syndrome, impaired renal function,
hypertension, congestive heart failure, or postrenal trans-
plant patients treated with ACE inhibitors alone or in
combination with AT2-receptor antagonists are well known
in pediatric renal (and cardiac) clinics and have been
reported [116, 117, 120–122].

It is generally accepted to be true, though not exactly
proven, that the renal hemodynamic effects of ACE
inhibitors are due to the blockade of a renin–angiotensin
system. In a significant percentage of renal patients (renal
artery stenosis, end-stage renal disease) and in patients with
congestive heart failure, especially when volume depleted
(diuretics, nephrotic syndrome), the maintenance of GFR is
highly dependent on angiotensin-II-mediated efferent vaso-
constriction. In the case of instituting ACE inhibitors and/or
AT2-receptor antagonist treatment, close surveillance of
renal function and blood pressure is needed, at least during
the first 2 weeks, because a decline in renal function may
be transient. The treatment should be started at low doses
then gradually increased. The concomitant use of NSAIDs
should be avoided, because in these situations, the afferent
vasoconstriction (by prostaglandin synthesis inhibition) in
combination with efferent vasodilatation (due to ACE
inhibition) may result in a marked decline of GFR. The
sometimes inevitable combination of ACE inhibitors and
calcineurin inhibitors needs close monitoring and expertise.

AKI has not been seen after the administration of other
antihypertensive agents that do not interfere with the renin–
angiotensin system.

Calcineurin inhibitors

The therapeutic potential and renal side effects of CyA and
tacrolimus are well known to pediatric nephrologists. The
introduction of calcineurin inhibitors has improved the
outcome of renal and other organ transplants dramatically,
but cyclosporine-related nephrotoxicity has become a
significant side effect to manage [8]. Indeed, nephrotoxicity
is the most significant and limiting adverse effect caused by
calcineurin inhibitors. This paper only discusses aspects of
AKI related to calcineurin inhibitors. Acute nephrotoxicity
is a hemodynamically mediated phenomenon characterized
by the absence of permanent structural changes and
reversibility with decrease or discontinuation of the

offending or concomitant nephrotoxic (interacting) drug
[123].

GFR impairment is caused by intrarenal vasoconstriction
that induces a decrease in renal blood flow. A great deal of
effort has been taken to unravel the mechanism of CyA-
induced vasoconstriction. Some mechanisms and mediators
have been found. The renin–angiotensin–aldosterone sys-
tem is involved [124], as are endothelin (a very potent
constrictor of intrarenal vessels), nitric oxide, prostaglan-
dins, free radicals, sympathetic system, vasopressin, atrial
natriuretic factor(s), and some further substances [123]. The
clinical presentation of acute CyA toxicity may present as
AKI, asymptomatic increase of serum creatinine, hemolytic
uremic syndrome (HUS), or a delayed recovery of renal
graft function after renal transplantation. The exact inci-
dence of these forms are unknown. The most frequent is an
asymptomatic increase of serum creatinine. Clinically
relevant AKI is published in 10% to more than 50% of all
patients in the early phase after nonrenal transplantation
[125–129]. The exact incidence in the pediatric population
is unknown, because AKI in these patients is generally
multifactorial and seldom related exclusively to CyA.

Especially in renal transplant patients, nephrotoxicity
caused by calcineurin inhibitors may be difficult to
distinguish from transplant rejection. In this situation, a
renal biopsy may be indicated. Otherwise, in extrarenal
organ transplantation and nonrenal autoimmune disease
patients, a creatinine rise is very likely to be caused by
CyA. As mentioned above, interaction of concomitant
drugs enhancing CyA levels via inhibition of cytochrome
P450 system (especially macrolide antibiotics, calcium
channel antagonists, and antifungal azoles) needs to be
considered, as this combination can cause AKI. Drugs that
decrease renal blood flow should also be avoided whenever
possible. Especially in bone marrow transplantation (BMT),
CyA can cause acute HUS, usually with severe AKI,
carrying a poor prognosis.

The acute nephrotoxicity profile of tacrolimus is very
similar to that of CyA, as it induces reversible functional
changes with the same frequency and intensity [123]. There
are still no satisfactory strategies and measures to prevent
CyA- and tacrolimus-induced AKI in children. Studies on
omega-3 fatty acids, cilastatin, and endothelin receptor
antagonists have been published with clinically positive
results in preventing GFR impairment, but none of them are
used routinely in clinical practice. One would recommend
regular monitoring of blood levels, caution with concom-
itant medication, and avoidance of dehydration. Neverthe-
less, despite all these measures, CyA and tacrolimus still
carry a significant risk of acute nephrotoxicity in patients
who suffer from severe diseases. New substances will
probably allow protocols without calcineurin inhibitors,
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minimizing the risk of drug toxicity and improving allograft
and patient survival [130].

Radiocontrast media

The incidence of AKI after administration of tri-iodinated
radiocontrast media has been found to be between 1% and
20% in adults [131]. Incidence in children is unknown. As
the new nonionic contrast media are less nephrotoxic, one
would assume that the frequency of AKI related to contrast
media has dropped over the last decade, but this is
counterbalanced by an increase in the use of radiographic
contrast investigations in an older age group. Furthermore,
nonionic contrast media were found without any benefit in
patients with normal renal function [132, 133].

Radiographic contrast-agent-induced nephropathy is
caused by vasoconstriction-mediated renal medullary ische-
mia and direct toxic damage to renal tubular epithelial cells.
These effects may be partially mediated by the generation
of reactive oxygen species. Most cases present as non-
oliguric AKI, although oliguric renal failure is possible as
well [72]. Maximum creatinine rise usually occurs 3–5 days
after admission of contrast media. Urine analysis often
reveals granular casts, tubular epithelial cells, and minimal
proteinuria but may be entirely unremarkable in some
cases. Usually, the fractional excretion of sodium is very
low. Risk factors include baseline impairment of renal
function, diabetes mellitus, congestive heart failure, higher
doses of contrast media, and concurrent use of nephrotoxic
drugs. Of all these risk factors, preexisting renal function
impairment appears to be the single most important.
Preventive measures include intravenous hydration and
administration of acetylcysteine [134–136]. However, the
administration of calcium antagonists, theophylline, atrial
natriuretic peptide, mannitol, furosemide, and dopamine has
not shown to be effective [137]. In adults, dialysis is
infrequently required, and some degree of residual renal
impairment has been reported in about 30% of affected
adults.

Cytostatics

Nephrotoxicity related to cytotoxic treatment in children
with oncological diseases is well known and has been
reviewed several times [27, 138–145]. Ifosfamide causes
predominantly chronic tubulopathy, sometimes beginning
months or years after therapy. AKI has seldom been
reported. In a study by Skinner et al. [141], impairment of
GFR was observed in 61 of 123 patients, but overt renal
failure was not found. However, in studies by Rossi et al.,
no acute renal failure has been reported [146–147]. Higher
total ifosfamide dosage correlated significantly with greater

glomerular toxicity. In adults, AKI related to ifosfamide has
been documented secondary to tubular necrosis with high-
dose therapy (>5g/m2), particularly in patients concurrently
treated with cisplatin [148, 149]. In children, AKI case
reports of prerenal failure due to water and sodium loss
caused by the tubulopathy have been published [150].

Cisplatin may induce both acute and chronic renal
toxicity [151]. A progressive and persistent reduction in
GFR may follow each successive treatment cycle. The
precise mechanisms involved in cisplatin-induced renal
failure have not been completely clarified, but mitochon-
drial dysfunction and apoptosis are likely to play an
important role. Inflammatory mechanisms may contribute
to toxin-induced acute kidney injury as well [152, 153].
Early clinical studies with cisplatin reported dose-related
AKI in more than 70% of adult patients [154]. In a series of
22 children receiving cisplatin, Womer et al. described a
GFR of less than 80 ml/min per 1.73 m2 in 18 patients
[155]. Polyuria regularly follows administration of cisplatin
and occurs in two distinct phases. The first is within the
first 24–48 h after administration, urine osmolality drops
but GFR remains stable. This stage of early polyuria
usually reverses spontaneously. The second phase of
polyuria is 72–96 h after cisplatin administration and is
characterized by an increase in urine volume and a
persistent reduction in the GFR [156]. In efforts to reduce
renal toxicity associated with cisplatin, therapeutic inter-
ventions have been aimed at the reduced production and
enhanced excretion of highly reactive metabolites. Infusion
of mannitol and saline is the clinical intervention most
commonly used. The effectiveness of these measures is
somewhat illustrated by a randomized study in adults by Al
Sarraf et al. [157], but this protective effect was lost during
subsequent cycles. The use of hypertonic (3%) saline
infusion as an effective renoprotective measure awaits a
randomized study as well, but cisplatin should not be given
to volume-depleted patients. Another potential angle is to
take a patient’s GFR into account in dosing. This has
already been proposed by some therapeutic protocols. Also
with cisplatin, the concurrent administration of NSAIDs,
aminoglycosides, or other nephrotoxic drugs should be
avoided.

Recently, a liposomal formulation of cisplatin, Lip-
oplatin, was developed to reduce systemic toxicity of
cisplatin. It is under clinical evaluation in adult medicine,
and phase 1 and phase 2 studies showed no nephrotoxicity
up to a dose of 125 mg/m2 every 14 days [158, 159].
However, data on effectiveness and toxicity in pediatric
oncology are not yet available.

Acute kidney injury has also been reported following
administration of high-dose methotrexate (MTX). The most
commonly accepted mechanism for this drug-induced
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toxicity is the precipitation of MTX and its metabolites in
the distal tubules, leading to obstructive uropathy and
tubular necrosis. Urinary alkalization and hydration offer
protection against MTX-induced renal dysfunction. In
patients with MTX-induced AKI, charcoal hemoperfusion
and sequential hemodialysis with high-flux dialyzers were
able to achieve a significant clearance of MTX. More
recently, carboxypeptidase-G(2) [CPDG(2)] (a recombinant
bacterial enzyme that rapidly hydrolyzes MTX to inactive
metabolites) has become available in the treatment of
MTX-induced renal dysfunction. CPDG(2) administration
has been well tolerated and results in consistent and rapid
reductions in plasma MTX concentrations by a median of
98.7%. Early administration of CPDG(2) in combination
with leucovorin may be beneficial for patients with MTX-
induced renal dysfunction and significantly elevated plasma
MTX concentrations [160].

The combination of nephrotoxic drugs in the setting of
HSCT intensifies nephrotoxic probability. Renal aspects of
this specific therapeutic maneuver have been reviewed
elsewhere [138], so here we summarize the important
aspects of AKI in this very specific group of patients.
Incidence of AKI immediately after HSCT in pediatric
patients appears to be between 25% and 50% [161], with 5–
10% requiring renal replacement therapy. In a prospective
study involving 89 children, AKI was found in 25% within
30 days after HSCT. Specific renal syndromes appear in the
course of HSCT at different time intervals, revealing a
similar pattern in children in comparison with adult patients
[27, 162]. In both children and adults, impaired renal
function associated with liver impairment (hepatorenal
syndrome) is the most significant cause of AKI. Further
causes for AKI in the early phases after HSCT are
septicemia, hypotension, drug toxicity, and the use of
amphotericin B. To assess AKI risk factors in our pediatric
population, we carried out logistic regression analyses and
found allogeneic HSCT, conditioning containing cyclo-
phosphamide, and etoposide, septicemia, hyperbilirubine-
mia, venoocclusive disease, and the use of spironolactone
significantly correlated with AKI. However, age, diagnosis,
and TBI did not. Specific therapeutic approaches have not
yet been known to lower frequency or to improve outcome
so far.

A growing number of case reports have been published
in adult medicine regarding the nephrotoxicity of
bisphosphonates. With regard to zoledronate, the incidence
of AKI has been found to be between 9% and 13%. The
pathology showed diffuse tubular atrophy and injury
without interstitial nephritis. Bisphosphonate-induced AKI
in children remains undocumented [163, 164].

Whereas therapy with intravenous immunoglobulin has
been known to carry a 1–15% risk of AKI in adults [165–

167], only a few case reports in children have been
published [168]. Presumable risk factors consist of an
impaired GFR and age over 65 years.

Natural toxins

Toxin-induced AKI by prescription of herbal and alterna-
tive medicines is uncommon in Europe but has become a
common cause of mortality and morbidity in Africa (see
Swanepoel et al. for review [169] and [170]). Animal
nephrotoxin-induced AKI is also uncommon in Europe but
well known to colleagues from Africa, South America, and
Australia. Table 2 outlines a list of common biologic
nephrotoxins produced by animals. Many of these toxins
cause AKI by direct or indirect mechanisms. The main
indirect mechanism is rhabdomyolysis [171]. Some direct
mechanisms include acute tubular necrosis, acute interstitial
nephritis, necrotizing arteritis, and sometimes extracapillary
glomerulonephritis. The consumption of a raw fish gall-
bladder containing toxic ichthyogallotoxin has been known
to cause AKI in children and has been reported. In this
instance, therapeutical approaches are symptomatic, and
sometimes, intensive care and renal replacement therapy
may be required.

Diagnosis, treatment, and outcome

Clinical management and supportive therapy of children
with suspected or established AKI caused by nephrotoxicity
is not unlike other forms. A child’s clinical history may
help reveal which drugs had been administered within the
previous 5–7 days. Postrenal obstruction needs to be
excluded by ultrasound, and infective or immunological
causes need to be addressed by laboratory investigations.
Hemolysis and rhabdomyolysis need to be excluded,
especially in cases of dark urine (which is sometimes
misinterpreted as macrohematuria).

Table 2 Common biologic nephrotoxins produced by animals.
Modified from Chesney and Jones [72]

Animal Biologic nephrotoxins

Snake Phospholipase A2, myotoxins,
procoagulant-activating factors
V and X

Spider Sphingomyelinase D, neurotoxins
Bee Melittin, phospholipase A2, mast-cell

degranulation protein
Wasp Antigen 5, mastoparans
Murine animals (carp,
jellyfish, sea anemone)

Ichthyogallotoxin, cyprinol
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It is of great importance to assess the exact status of
hydration (fractional excretion of sodium, urine sodium,
urine osmolality) and to decide whether a load of fluid or
diuretics may be necessary. Correction of volume depletion
and/or congestive heart failure and reversing diminished
renal perfusion are of primary importance. Especially in
patients with dehydration, special attention has to be paid to
good fluid management and replacement to establish
adequate renal blood flow and perfusion. The administra-
tion of renal-dose dopamine (1–3 µg/kg min) was shown to
be ineffective on patient survival or outcome in both adults
[172–174] and children [175]. There is no evidence from
randomized trials to support the use of dopamine to prevent
renal dysfunction in indomethacin-treated preterm infants
[176].

Diuretics have also been used in patients with oliguric
AKI to improve urine output, which may decrease the
concentration of toxins and improve clearance of solute and
medications. It should be noted, however, that the increase
in urine flow provided by diuretic therapy does not reflect
an improvement in GFR, nor has it been demonstrated to
prevent or facilitate recovery from acute tubular necrosis
[177]. In addition, children with AKI may deteriorate
further with diuresis, particularly patients with prerenal or
radiocontrast-induced AKI [178].

As children with nephrotoxic insults are more likely to
suffer nonoliguric renal failure, serum chemistry needs to be
supervised very carefully in high-risk children. It has also to
be considered that in children with reduced muscle mass
(oncological diseases), GFR is overestimated by assessment
of serum creatinine (or Schwartz formula). These two aspects
may delay the diagnosis of AKI or may result in GFR
overestimation. When medications are prescribed in AKI, the
mechanism of drug elimination, metabolic pathway, and
possible further nephrotoxic effects must be considered and
adjustments made for the degree of renal failure.

In case of suspected or definite nephrotoxic agents being
the cause of AKI, drug withdrawal is the most important
measure physicians can take, as avoidance of further
possible nephrotoxic agents needs to be strictly considered.
In all children, the basic principles of managing AKI are
fluid maintenance, electrolyte homeostasis, and adequate
nutrition. Only few patients will require specific treatment
as acetylcysteine in radiocontrast nephropathy. In interstitial
nephritis, corticosteroids may be given, but their benefits
are not proven by RCTs.

Regarding indication and optimal choice of renal
replacement therapies, we refer to published reviews and
guidelines [179–184].

The mortality of children with AKI was found to be
between 8% and 89% in retrospective studies [39, 40]. In
prospective studies, Bailey et al. report a mortality rate of

29.6% in patients with AKI compared with 2.3% in patients
without [45], and the Spanish study found a mortality rate
of 36% in patients with AKI [46]. Recent data from
Houston showed a 3- to 5-year survival rate of 79.9% of
children with AKI who survived to hospital discharge
[185]. Most deaths (68.5%) occurred within 12 months
after initial hospitalization. Combining those who died
during initial hospitalization and in the subsequent 3–
5 years, the overall survival rate was 56.8% [185]. Renal
survival in survivors was 91%. Among 29 patients assessed
at 3–5 years, 59% had at least one sign of renal injury
(microalbuminuria, a decreased GFR, hyperfiltration, or
hypertension). In that study, AKI was caused by nephro-
toxic agents in 14.3%. With regard to the fate of individuals
who develop AKI caused by nephrotoxicity, several out-
comes have been reported in adults. In most cases, the
drug’s nephrotoxicity is partly or wholly reversible.
However, some authors have suggested that as many as
50–60% of adults who suffer nephrotoxicity may retain an
element of permanent renal damage [186, 187].

In the setting of HSCT, the doubling of serum creatinine
is associated with a twofold increase in mortality in adults,
and the need for dialysis predicts a mortality rate of 80–
90% [30, 188]. In comparison with adults, AKI and renal
replacement therapy were also associated with an increase
in mortality [47, 50, 189]. On the other hand, the predictive
value of transient AKI for renal function in long-term
survivors remains controversial. In some studies, renal
impairment during the early phase of HSCT was not
predictive of later renal impairment [48, 190], whereas
Kist-van Holthe et al. found correlations between high
serum creatinine within 3 months after BMT and chronic
renal failure 1 year after BMT [49] but only a weak
predictive value of acute AKI for chronic renal failure
[191].

Conclusion

The true incidence of nephrotoxicity as a cause of AKI in
children is unknown. In general, drugs are an infrequent
cause of community-acquired AKI, especially in children.
However, drugs and hypoxia are the leading etiologic
factors for hospital-acquired AKI, and it remains a
significant cause of morbidity and mortality in children.
Despite advances in understanding the pathophysiology of
AKI, little progress has been made in its treatment. The
judicious use of all nephrotoxic drugs and their combina-
tions, together with adequate hydration, are still the most
important measures to take in the minimization of nephro-
toxicity. Children with AKI caused by nephrotoxic agents
have a significant risk for chronic renal injury.
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Questions (answers appear following reference list)

1. Which one of the following statements is true of
NSAIDs-induced AKI?

A In most children with NSAIDs-induced AKI,
dehydration played an important role.

B NSAIDs-induced AKI is mostly caused by intersti-
tial nephritis.

C Mesalazine-induced AKI is always caused by
interstitial nephritis.

D Glucocorticoids play an important role in treatment
of NSAIDs-induced AKI.

2. Which one of the following statements is true? Neonates:

A Have higher rates of nephrotoxicity-induced AKI
compared with older children.

B Have generally a poor long-term prognosis in
relation to nephrotoxicity-induced AKI.

C Benefit from a “pharmacological dosing” of genta-
micin regarding nephrotoxicity.

D Benefit generally from ibuprofen compared with
indomethacin regarding the closue of PDA.

3. Which one of the following answers is not true?

A β-lactam antibiotics need tubular transport for
nephrotoxicity.

B Renal replacement therapy always shortens the time
of renal insufficiency by removing toxins.

C Ceftriaxone may induce AKI indirectly by hemoly-
sis and nephrolithiasis.

D Macrolide antibiotics may cause indirect AKI by
enhancing calcineurin levels by inhibiting cyto-
chrome P-450 isoenzymes.

4. Which one of the following answers is true?

A ACE inhibitors are forbidden in children with
steroid-resistant nephrotic syndrome because of
their risk of AKI.

B The concomitant use of NSAIDs and ACE inhib-
itors should be avoided.

C AKI caused by ACE inhibitors is always character-
ized by interstitial nephritis.

D Concomitant therapy with AT2-receptor antagonists
enhances side effects of ACE inhibitors.

5. Which one of the following answers is not true?

A Nephrotoxicity is the most significant and limiting
adverse effect caused by calcineurin inhibitors.

B The acute nephrotoxicity of CyA is a hemodynam-
ically mediated phenomenon.

C A kidney biopsy is often necessary in renal
transplant children to distinguish between CyA
nephrotoxicity and rejection.

D CyA-induced HUS in BMT carries a rather good
prognosis.
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