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KEY POINTS

� Neuroblastoma (NB) is the most common extracranial pediatric tumor, most frequently
diagnosed cancer in infancy, and has a heterogeneous presentation and prognosis.

� Clinical and biological prognostic factors are used to risk stratify patients into groups with
low, intermediate, and high risk for recurrence; most protocols now use the International
Neuroblastoma Risk Group classification system.

� Age, stage, histology, and amplification of the MYCN oncogene are currently the most
robust prognostic factors.

� Outcomes for low- and intermediate-risk NB are excellent, but survival for high-risk NB is
less than 50%.

� High-risk NB tumors contain many segmental chromosome aberrations (eg, loss of het-
erozygosity 1p, 11q); but recurrent somatic mutations are rare, with anaplastic lymphoma
kinase (ALK) being the most commonly altered gene in approximately 10% of NB.

� Survival after relapse of metastatic NB is uncommon; current and upcoming trials will rely
on incorporation of novel immunotherapies, inhibitors of aberrant pathways (eg MYC,
ALK), and radioisotope-containing regimens, such as high-dose iodine-131-metaiodo-
benzylguanidine.
INTRODUCTION

Neuroblastoma (NB), the most common extracranial tumor of childhood, is a cancer of
primordial neural crest cells that give rise to sympathetic neural ganglia and adrenal
medulla. NB has a diverse pattern of clinical presentation and prognosis that ranges
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from spontaneous regression to aggressive metastatic tumors. For more than 2 de-
cades, NB treatment has served as a paradigm for the incorporation of clinical and
biological factors to stratify patients and tailor therapies. Using clinical, pathologic,
and increasingly genetic factors, patients can be categorized as low, intermediate
(IR), and high risk (HR) for recurrence. The overall survival (OS) for patients with low
and IR NB is excellent at greater than 90% with relatively minimal surgical or medical
interventions (Fig. 1). The goal of recent trials for non-HR patients has been to
decrease treatments further and minimize chemotherapy-related toxicities. In
contrast, long-term survival for HR patients remains 40% to 50% despite intensifica-
tion of treatments and incorporation of immunotherapies. Current protocols are aimed
at identifying better predictors of response and outcome as well as discovering
genetic aberrations that may represent tractable therapeutic targets. This article sum-
marizes the clinical presentations and current understanding of NB biology and prog-
nostic features, their roles in risk stratification–based treatments, and novel therapies
for patients with recurrent disease.
EPIDEMIOLOGY AND GENETIC PREDISPOSITION

The incidence of NB in North America and Europe is 10.5 per million children between
0 and 14 years of age, with a slight male predominance (1.2:1.0).1–4 NB is the most
common cancer diagnosed in infancy, with most patients diagnosed between 0 and
4 years of age (median age 19 months5), and less than 5% at greater than 10 years.
NB accounts for 8% to 10% of all pediatric cancers and 12% to 15% of cancer-
related deaths in children. Although there are no significant geographic variations in
incidence, there are ethnic disparities in outcome. African American and Native Amer-
ican patients are more likely to have HR features and poor outcomes, in part because
of genetic differences.6–8 Environmental factors, including parental exposures, have
not been clearly linked with NB development.9,10
Fig. 1. Event-free survival (EFS) based on children’s oncology group (COG) risk stratification.
EFS Kaplan-Meier survival curves calculated from the time of diagnosis for children enrolled
onto COG (since 2001); Children’s Cancer Group and Pediatric Oncology Group Neuroblas-
toma Biology trials and were classified as low risk, IR, or HR at the time of diagnosis based
on clinical and biological factors (current COG classification is summarized in Table 2). (From
Park JR, Bagatell R, London WB, et al. Children’s Oncology Group 2013 blueprint for
research: neuroblastoma. Pediatr Blood Cancer 2013;60(6):986, with permission. � 2012
Wiley Periodicals, Inc.)
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NB is the only solid tumor of childhood for which there have been large screening
initiatives, pioneered largely in Japan. Universal screening of 6-month-old asymptom-
atic infants by detection of elevated urinary catecholamines resulted in a 2-fold in-
crease in NB incidence to 20.1 per million children; however, most of the detected
tumors had favorable clinical and biological characteristics.11–13 Studies in Germany
and Quebec also demonstrated an increased incidence and detection of tumors
with favorable biology and pathology.14,15 In general, universal screening has not
detected poor prognosis disease, which usually presents at an older age and, thus,
has not affected mortality rates.16 In contrast, in selected populations with an inherited
genetic predisposition to NB, screening may be indicated.

Genetic Predisposition

The incidence of familial NB is estimated at 1% to 2%.17 Cases often involve multifocal
and/or bilateral adrenal primary tumors with a median age of onset of 9 months. The
pattern of inheritance is autosomal dominant with incomplete penetrance. NB can
occur in patients with other neural crest disorders, such as Hirschsprung disease
(HSCR), congenital central hypoventilation syndrome (CCHS), and neurofibromatosis
type 1 (NF1). Mutations in the Phox2b homeobox gene have been detected in subsets
of patients with familial NB and usually are associated with other neurocristopathies,
such as HSCR and CCHS.18–20 Phox2bmutations have also been detected in approx-
imately 2% of sporadic NB. There are many reports of NB in patients with NF;
however, there are conflicting data as to whether germline NF1 mutations are associ-
ated with an increased risk to develop NB.21,22

Linkage studies in familial NB pedigrees identified candidate chromosomal predis-
position regions including 16p, 12p, and 2p23–26 and led to the identification of germ-
line mutations in the tyrosine kinase domain of the anaplastic lymphoma kinase (ALK)
oncogene.27,28 ALK is involved in nervous system development,29 and central nervous
system (CNS) anomalies have been reported in some patients with germline ALK mu-
tations.29 Sporadic NB tumors also harbor ALK abnormalities, including genomic
amplification (2%–3%) and missense mutations (8%–12%)27,28,30–33 (see “Somatic
Gene Mutations”), that can be targeted by pharmacologic inhibitors.34–36 Studies of
ALK inhibitors in NB and other tumors with ALK aberrations (eg, anaplastic large
cell lymphoma) have shown promising results.37 NB cases are also detected in other
familial cancer syndromes, including Beckwith-Wiedemann syndrome,38 Li-
Fraumeni,39,40 Noonan (PTPN11), some subtypes of Fanconi anemia, and some chro-
mosomal breakage syndromes.41,42

Recent genome-wide association studies using peripheral blood from thousands of
patients with NB have also identified germline genetic variants that may predispose to
the development of sporadic NB. These variants include single nucleotide polymor-
phisms (SNPs) in LINC00340, BARD1, LMO1, DUSP12, DDX4, LIN28B, HACE1, and
TP53.43–48 Unlike the rare germline mutations in ALK and Phox2B described earlier,
these SNPs are more frequent but individually have less dramatic impacts on the
NB risk.49 The interplay between multiple germline variants and somatic alterations,
discussed later, may influence the initiation and progression of NB.
PRESENTATION, DIAGNOSIS, AND STAGING
Symptoms

NB presentations vary based on the disease extent and tumor location, which may
occur anywhere along the sympathetic chain resulting in local effects on organs, ves-
sels, or nerves (Fig. 2, Table 1). Most of them (65%) arise in the abdomen, most
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Fig. 2. Percent distribution of NBs by primary site and age; Surveillance, Epidemiology and
End Results Program (1975 to 1995). (Adapted from Ries L, Smith M, Gurney J, et al. Cancer
incidence and survival among children and adolescents: United States SEER Program 1975–
1995, National Cancer Institute, SEER Program. Bethesda (MD): NIH Pub; 1999. p. 99–4649.
NIH Publication No. 99–4649.)
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commonly the adrenal gland, and may be asymptomatic or associated with hyperten-
sion, abdominal pain, distension, and constipation. Other sites include the neck,
chest, and pelvis. The primary site location is associated with age and outcome.50

Cervical and thoracic tumors are more common in infants and may present with
Horner syndrome (unilateral ptosis, anhidrosis, and myosis) and respiratory
Table 1
Clinical presentation and symptoms of NB

Location Signs and Symptoms

Abdomen/pelvis Pain, constipation, distension, urinary retention,
hypertension

Thorax Respiratory distress, Horner syndrome

Presacral and paraspinal (includes
abdominal and thoracic masses)

Symptoms of cord compression (urinary
retention, paraplegia/paraparesis, clonus)

Neck Mass/swelling

Metastases Irritability, bone pain, cytopenias (petechiae,
ecchymoses, pallor), periorbital ecchymoses, fever,
weight loss, lymphadenopathy

4S/4M metastases Hepatomegaly, coagulopathy, hyperbilirubinemia,
respiratory distress (from abdominal enlargement),
skin nodules

Paraneoplastic syndromes � OMS: myoclonic jerking and random eye movement,
with or without cerebellar ataxia

� VIP secreting tumors: intractable secretory diarrhea
caused by tumor secretion of VIP

Patients may be asymptomatic or may have one or more of the listed symptoms or findings on
exam.

Abbreviations: OMS, opsoclonus myoclonus ataxia syndrome; VIP, vasoactive intestinal peptide.
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symptoms. Epidural or intradural tumor extension occurs in 5% to 15% of patients and
may result in spinal cord compression and paraplegia.51 Two rare paraneoplastic
syndromes associated with NB include secretory diarrhea caused by tumor produc-
tion of vasoactive intestinal peptide52,53 and opsoclonus myoclonus ataxia syndrome
(OMS). OMS is reported in 2% to 3% of patients and is commonly associated with
favorable well-differentiated tumors.54,55 OMS is characterized by myoclonic jerks
and random eye movements with or without ataxia, is attributed to immune-
mediated effects, and often persists after resection, resulting in significant neurodeve-
lopmental sequelae.
Approximately half of patients present with localized or regional disease, and 35%

have regional lymph node spread at the time of diagnosis. Distant metastases are
detected in 50% of patients at diagnosis and occur through both lymphatic and hema-
togenous routes. The most common sites include bone, bone marrow, and liver. NB
has a particular predilection to spread to metaphyseal, skull, and orbital bone sites,
resulting in a classic presentation characterized by periorbital ecchymoses (raccoon
eyes), proptosis, and potentially visual impairment. In contrast to the frequent lack
of symptoms for locoregional tumors, patients with widespread disease are often ill
appearing with fever, pain, irritability, and weight loss. Less common sites of metas-
tases at diagnosis include the lung56 and brain; however, CNS disease at relapse is
increasingly common.57,58 In infants there is an unusual pattern of metastases, stage
4S or MS (see “Staging” later), characterized by skin nodules and/or diffuse liver
involvement and hepatomegaly often associated with respiratory compromise.59

Diagnosis is confirmed either by (1) tumor tissue biopsy and histopathology (Fig. 3)
or (2) a combination of NB tumor cells detected in bone marrow together with elevated
urine or serum catecholamine or catecholamine metabolites (dopamine, vanillylman-
delic acid, and homovanillic acid). Evaluation includes cross-sectional imaging with
computed tomography or MRI to determine size, regional extent (including intraspinal
invasion), distant spread to neck, thorax, abdomen and pelvis (see Fig. 4).60,61 Bilat-
eral iliac crest bone marrow aspirates and biopsies are required to determine tumor
involvement by histology. Radioiodine-labeled metaiodobenzylguanidine (MIBG), a
norepinephrine analogue that selectively concentrates in sympathetic nervous tissue,
is used to detect primary tumors and metastatic sites.62 Approximately 90% of pa-
tients have MIBG-avid disease, and semiquantitative scoring systems are being inte-
grated into NB response criteria.63,64 [(18)F-fluorodeoxyglucose positron emission
tomography (FDG-PET) scans are recommended for detecting metastatic disease in
patients whose tumors are not MIBG avid.65–67 Technetium bone scans can be
used to detect cortical bone disease if MIBG and PET scan are not available.

Staging

Until recently, the criteria for diagnosis and staging were based on the surgical-
pathologic International Neuroblastoma Staging System (INSS) (Box 1).68,69 INSS
stages 1 to 3 are localized tumors that are classified based on the amount of resection,
local invasion, and node involvement. Stage 4 is defined as distant metastases; 4S
(4Special) is characterized by metastases to the liver, skin, and/or marrow in infants,
which is usually associated with favorable biological features and can undergo spon-
taneous regression. In 2009, the International Neuroblastoma Risk Group’s (INRG)
stratification system was developed by representatives from a major consortium in
North America (Children’s Oncology Group [COG]) Europe (SIOPEN, International
Society of Pediatric Oncology European Neuroblastoma), and Germany, Japan, and
Australia. The INRG staging system (INRGSS) uses surgical risk factors (SRFs), which
are preoperative radiological features to distinguish locoregional tumors that do not
Downloaded from ClinicalKey.com at Stony Brook State University of New York August 17, 2016.
For personal use only. No other uses without permission. Copyright ©2016. Elsevier Inc. All rights reserved.



Fig. 3. Histopathology and fluorescence in situ hybridization (FISH) assays (A–C). Shown are
representative images (hematoxylin-eosin, original magnification �200 [A and C] �400)
from 3 different histologic appearances of NB: (A) poorly differentiated NB, (B) differenti-
ating NB, and (C) ganglioneuroblastoma (stroma-rich NB). The fluffy pink material sepa-
rating the cells is neuropil (categorized as stroma-poor). (A) The poorly differentiated NB
cells have minimal cytoplasm, discernible only as purple-stained nuclei. (B) The neuroblasts
are differentiating as reflected by defined pink cytoplasm and larger nuclei. (C) The neuro-
blasts have the features of fully differentiated ganglion cells, and the spindle cell areas in
the 4 corners are composed of Schwann cells (categorized as stroma-rich). (D) FISH showing
MYCN amplification (MYCNA). The presence of multiple copies of MYCN is detected in
tumor cells using a labeled probe (red) for the chromosomal location 2p region that includes
the MYCN gene. MYCNA is defined as greater than 10 copies. (E) FISH showing 1p loss of
heterozygosity (LOH). Cells show 2 signals from the control 1q probe (green) and 1 signal
for the 1p 36 probe (red) indicating that there is loss of one copy of 1p36 loci (LOH) and
2 normal copies of 1q. (Courtesy of Dr Paul Thorner, Pathology Department, and Dr Mary
Shago, Cytogenetics Laboratory, Hospital for Sick Children, Toronto.)
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involve local structures (INRGS L1) from locally invasive tumors with imaging-defined
risk factors (IDRFs) (INRGS L2) (Boxes 2 and 3).70,71 INRGS M and MS refer to tumors
with distant metastases and have the INSS 4 or 4S pattern of spread, respectively.

CLINICAL AND BIOLOGICAL RISK FACTORS, PROGNOSIS, AND RISK STRATIFICATION

NB is classified into low risk, IR, and HR based on clinical and biological factors that
have been shown to predict prognosis and risk of recurrence, including age, stage,
histopathology, DNA index (ploidy), and MYCN amplification (MYCNA) and are used
to assign treatment (Table 2). In comparison, the recently developed INRG classifica-
tion system defines similar cohorts using the INRG database (8800 patients treated
between 1990–2002) to facilitate comparisons across international clinical trials
(Box 4).70
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Fig. 4. Diagnostic imaging of NB. Shown are representative images of NB tumors from
different primary locations from diagnostic evaluations. (A) Computed tomography (CT)
scan (axial view) shows a typical retroperitoneal mass arising from the adrenal with calcifica-
tions (white speckles in tumor mass, black arrows) and tumor encasement of vessels (aorta,
white arrow). The left kidney demonstratesmild pelviectasis, which is commonly seen second-
ary to themass effect. (B) CTscan (coronal view)of very large liverwithmultipleNB tumornod-
ules (darker than surrounding liver parenchyma), which is typically seen in infants with
International Neuroblastoma Staging System stage 4S/INRG MS. (C) MRI scan (sagittal view)
shows a paraspinal thoracicmass (arrows) with intraspinal extension and spinal cord compres-
sion. (D) Brain and orbital CT (axial) with large metastases involving the orbits, with more
extensive involvement on the left (arrow). (E) I-123 metaiodobenzylguanidine scan demon-
strates widespread bony metastases in the extremities, vertebrae, and pelvis (darker lesions).
Note the normal physiologic uptake in the heart, liver, and bladder.

231

Downloaded from ClinicalKey.com at Stony Brook State University of New York August 17, 2016.
For personal use only. No other uses without permission. Copyright ©2016. Elsevier Inc. All rights reserved.



Box 1

International Neuroblastoma Staging System (INSS)

Stagec,d Description

1 Localized tumor with complete gross excision, with or without microscopic
residual disease representative ipsilateral lymph nodes negative for tumor
microscopically (nodes attached to and removed with the primary tumor may
be positive)

2A Localized tumor with incomplete gross resection; representative ipsilateral
nonadherent lymph nodes negative for tumor microscopically

2B Localized tumor with or without complete gross excision, with ipsilateral
nonadherent lymph nodes positive for tumor; enlarged contralateral lymph
nodes must be negative microscopically.

3 Unresectable unilateral tumor infiltrating across the midlinea, with or without
regional lymph node involvement; or localized unilateral tumor with
contralateral regional lymph node involvement; or midline tumor with
bilateral extension by infiltration (unresectable) or by lymph node
involvement

4 Any primary tumor with dissemination to distant lymph nodes, bone, bone
marrow, liver, skin, and/or other organs (except as defined for stage 4S)

4S Localized primary tumor (as defined for stage 1, 2A or 2B) with dissemination
limited to skin, liver, and/or bone marrowb (limited to infants <1 y of age)

a The midline is defined as the vertebral column. Tumors originating on one side and crossing
the midline must infiltrate to or beyond the opposite side of the vertebral column.
b Marrow involvement in stage 4S should be minimal (ie, less than 10% of total nucleated cells
identified as malignant on bone marrow biopsy or marrow aspirate). More extensive marrow
involvement would be considered to be stage 4.
c Multifocal primary tumors (eg, bilateral adrenal primary tumors) should be staged according
to the greatest extent of disease, as defined earlier, and followed by a subscript M (eg, 3M).
d Proven malignant effusion within the thoracic cavity if it is bilateral or the abdominal cavity
upstages patients to INSS 3.

Data from Brodeur GM, Pritchard J, Berthold F, et al. Revisions of the international criteria for
neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 1993;11(8):1466–77;
and Brodeur GM, Seeger RC, Barrett A, et al. International criteria for diagnosis, staging, and
response to treatment in patients with neuroblastoma. J Clin Oncol 1988;6(12):1874–81.
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Stage and Age

Many studies have consistently demonstrated the independent prognostic value of
the INSS stage, including an INRG database analysis that reported superior event-
free survival (EFS) and OS for patients with nonmetastatic NB (INSS stages 1, 2,
and 3) and INSS stage 4S (83 � 1% and 91 � 1%) compared with only 35 � 1
and 42 � 1%, for patients with INSS stage 4 disease.70 With the exception of stage
4S, specific metastatic sites have not been incorporated into staging systems. How-
ever, retrospective studies suggest that spread confined to distant lymph nodes may
predict improved outcomes,72 whereas there is a trend toward inferior outcomes for
patients with metastases to the lung56 or bone marrow.73 Although retrospective
studies have demonstrated the prognostic significance of the INRGSS, which incor-
porates SRFs,60,61,71 this will be prospectively validated across North America and
Europe.64

Age was one of the first prognostic indicators identified. In comparison to infants,
patients older than 1 to 2 years at diagnosis have an inferior outcome; this effect
is more prominent for patients with metastatic disease. Historically, a cutoff of
365 days had been used as a surrogate for tumor behavior; however, London and
Downloaded from ClinicalKey.com at Stony Brook State University of New York August 17, 2016.
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Box 2

International Risk Group Staging System (INRGSS)

Stagea Description

L1 Localized tumor not involving vital structures as defined by the list of image-defined
risk factors and confined to one body compartment

L2 Locoregional tumor with presence of one or more IDRFs (see Box 1)
M Distant metastatic disease (except stage MS)
MS Metastatic disease in children younger than 18 mo with metastases confined to skin,

liver, and/or bone marrow
a Patients with multifocal primary tumors should be staged according to the greatest extent of
disease as defined in the table.

Data from Monclair T, Brodeur GM, Ambros PF, et al. The International Neuroblastoma Risk
Group (INRG) staging system: an INRG task force report. J Clin Oncol 2009;27(2):298–303.
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colleagues5 studied the continuous nature of age for 3666 patients and concluded that
the most prognostic cutoff was 460 days (15.1 months). Several retrospective studies
specifically examined whether 18 months might represent a more clinically relevant
cutoff and demonstrated that EFS and OS for patients with INSS stage 4 disease
aged 12 to 18 months (with favorable tumor biology) was similar to that of patients
aged less than 12 months.74,75 Similarly, patients with INSS stage 3 disease aged
12 to 18 months had a superior outcome to those older than 18 months.76 Prospective
COG trials will determine whether reduction of therapy for toddlers aged 12 to
18 months with biologically favorable tumors, traditionally treated with more intensive
regimens, will still provide superior outcomes.77 Older children, adolescents, and
young adults with NB have a more indolent course and worse overall outcome despite
infrequent MYCN oncogene amplification (MYCNA); however, no specific prognostic
age cutoffs greater than 18 months have been identified.78

Histopathology

Pathologic characteristics have been used to further classify tumors into favorable
and unfavorable categories, initially using a system developed by Shimada and
colleagues79 that provided the basis for the more recently revised International
Neuroblastoma Pathology Committee (INPC) criteria. The prognostic value of INPC
classification, based on age, presence of Schwannian stroma, grade of neuroblastic
differentiation, andMitosis-karyorrhexis index, has been validated in large cooperative
group studies80,81 to identify specific patient risk groups that may benefit from modi-
fied therapy. In the COG P9641, patients with INSS stage 1 and 2 disease with favor-
able histology had a significantly better outcome than those with unfavorable histology
(UH) (EFS 90 � 3% and 72 � 7%, OS 99 � 1% and 86 � 5%).82

Tumor Genetics

NB genetic features have been used for risk stratification for more than 20 years. Two
broad categories of genetic aberration patterns include (1) tumors with whole chromo-
some gains, lack of structural changes, and hyperdiploid karyotype and (2) tumors
with segmental chromosomal aberrations (SCAs) and diploid DNA content, which
are often associated with poor outcomes. SCAs often include partial gains and losses
of chromosomal regions predicted to encode oncogenes and tumor suppressors,
respectively.
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Box 3

Image Defined Risk Factors (IDRFs)

Ipsilateral tumor extension within 2 body compartments

Neck-chest, chest-abdomen, abdomen-pelvis

Neck

Encases carotid and/or vertebral artery and/or internal jugular vein; extends to skull base;
compresses trachea

Cervicothoracic junction

Encases brachial plexus roots or subclavian vessels and/or vertebral or carotid artery;
compresses trachea

Thorax

Encases the aorta and/or major branches; compresses trachea and/or principal bronchi; lower
mediastinal tumor infiltrating costovertebral junction between T9 and 12

Thoracoabdominal

Encases the aorta and/or vena cava

Abdomen/pelvis

Infiltrates the porta hepatis and/or the hepatoduodenal ligament; encases branches of the
superior mesenteric artery at the mesenteric root or origin of celiac axis and/or superior
mesenteric artery; invades one or both renal pedicles; encases aorta and/or vena cava or iliac
vessels, crossing sciatic notch

Intraspinal tumor extension whatever the location provided that

More than one-third of the spinal canal in the axial plane invaded and/or the perimedullary
leptomeningeal spaces not visible and/or the spinal cord signal abnormal

Infiltration of adjacent organs/structures

Pericardium, diaphragm, kidney, liver, duodeno-pancreatic block, and mesentery

Conditions to be recorded but not considered IDRFs

Multifocal primary tumors

Pleural effusion, with or without malignant cells

Ascites, with or without malignant cells

IDRFs are used to determine the ability to completely resect locoregional tumors at diagnosis
based on surgical risk factors that can be defined by IDRFs detected on cross-sectional imaging
with CT and/or MRI.

Data from Monclair T, Brodeur GM, Ambros PF, et al. The International Neuroblastoma Risk
Group (INRG) staging system: an INRG task force report. J Clin Oncol 2009;27(2):298–303.

234 Irwin & Park
Allelic Gains, Amplifications, and Oncogenes

MYCNA defined as greater than 10 copies83 is detected in approximately 20% of NB
tumors, with a higher incidence in INSS stages 3 and 4 (40%) but only 5% of stages 1,
2, and 4s.70 Many studies have demonstrated that in comparison to patients with non-
MYCNA tumors, patients with MYCNA have a significantly worse outcome84,85

(reviewed in Refs.49,86,87). All patients withMYCNA stage 3, 4 and 4S tumors are clas-
sified as HR, including infants; however, the prognostic significance ofMYCNA in rare
cases of localized resected NB remains controversial.88,89 Importantly, most labora-
tory animal models for NB rely on overexpression of MYCN in neural crest cells36,90;
recent studies have identified drugs that target MYCN to inhibit NB growth.91
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Table 2
Children’s Oncology Group Neuroblastoma Risk Stratification

Risk Group Stage Age MYCN Ploidy Shimada

Low risk 1 Any Any Any Any

Low risk 2a/2b Any Not amp Any Any

HR 2a/2b Any Amp Any Any

IR 3 <547 d Not amp Any Any

IR 3 �547 d Not amp Any FH

HR 3 Any Amp Any Any

HR 3 �547 d Not amp Any UH

HR 4 <365 d Amp Any Any

IR 4 <365 d Not amp Any Any

HR 4 365–<547 d Amp Any Any

HR 4 365–<547 d Any DI 5 1 Any

HR 4 365–<547 d Any Any UH

IR 4 365–<547 d Not amp DI>1 FH

HR 4 �547 d Any Any Any

Low risk 4s <365 d Not amp DI>1 FH

IR 4s <365 d Not amp DI 5 1 Any

IR 4s <365 d Not amp Any UH

HR 4s <365 d Amp Any Any

COG currently uses the International Neuroblastoma Staging System’s stage, age, MYCN status,
DNA index or ploidy, and INPC histology to determine patient’s risk category as high, intermediate
or low.64

Abbreviations: amp, amplification; DI, DNA index; FH, favorable histology; UH, unfavorable
histology.

From Park JR, Bagatell R, London WB, et al. Children’s Oncology Group’s 2013 blueprint for
research: neuroblastoma. Pediatr Blood Cancer 2013;60(6):985–93.
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Amplification of ALK, located at 2p23 in close proximity to MYCN at 2p24, is
detected in 2% to 3% of NB and is more common, though not exclusively, observed
in tumors with MYCN amplification.92 A 17q gain detected in greater than 60% of
tumors is often associated with other poor prognostic markers (eg, MYCNA, older
age).93,94 Although the specific genes that may have oncogenic roles on 17q have
not been identified, candidates include BIRC5 (survivin), PPMID (WIP1), and NME1/2.

Allelic Losses and Tumor Suppressor Genes

The most frequently deleted chromosomal regions in NB include 1p, 4p, 11q, and 14q.
Chromosome 1p loss of heterozygosity (LOH), detected in 23%–30% of tumors, pre-
dicts poor outcome.95,96 1p36 LOH correlates withMYCNA and other HR features (eg,
metastasis, age >1, UH), and thus, 1pLOH may be most relevant as an independent
prognostic factor in infants and patients without MYCNA.97 The 1p candidate tumor
suppressor genes include the chromatin remodeling protein CHD598 and transcription
factor CASZ1.99 Chromosome 11qLOH is detected in approximately 30% to 40% of
patients.95,100 Like 17q gain and 1pLOH, 11qLOH is more common in patients with
stage 4 disease and predicts poor prognosis; however, 11qLOH is rarely associated
with MYCNA and, therefore, may predict additional HR subsets within the non-
MYCNA tumors. One 11q candidate gene, CADM1, has been implicated in NB growth
and proliferation.101 Although INRG currently includes 11qLOH as criteria to upstate to
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Box 4

INRG consensus pretreatment classification schema

INRG
Stage Age (mo) Histologic Category Grade of Tumor Differentiation MYCN 11q Aberration Ploidy

Pretreatment Risk
Group

L1/L2 — GN maturing; GNB intermixed — — — — A. Very low
L1 — Any, except GN maturing or GNB

intermixed
— NA — — B. Very low

Amp — — K. High
L2 <18 Any, except GN maturing or GNB

intermixed
— NA No — D. Low

Yes — G. Intermediate
�18 GNB nodular; neuroblastoma Differentiating NA No — E. Low

Yes — —
Poorly differentiated or undifferentiated NA — — H. Intermediate

Amp — — N. High
M <18 — — NA — Hyperdiploid F. Low

<12 — — NA — Diploid I. Intermediate
12–<18 — — NA — Diploid J. Intermediate
<18 — — Amp — — O. High
�18 — — — — — P. High

MS <18 — — NA No — C. Very low
Yes — Q. High

Amp — — R. High

Classification schema is based on analysis of 8800 patients in the INRG database (1990–2002). Risk groups are very low risk (5-year event-free survival
[EFS] >85%); low risk (5-year EFS >75% to �85%); IR (5-year EFS �50% to �75%); HR (5-year EFS <50%).

Staging of L1, L2, M, and MS described in Fig. 2B.
Abbreviations: Amp, amplified; EFS, event-free survival; GN, ganglioneuroma; GNB, ganglioneuroblastoma; NA, not amplified.

Adapted from Cohn SL, Pearson AD, LondonWB, et al. The International Neuroblastoma Risk Group [INRG] classification system: an INRG task force report. J
Clin Oncol 2009;27(2):295.
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Neuroblastoma 237
HR classification, prospective trials are ongoing to determine whether 11qLOH
predicts poor outcomes for non-HR patients.

Segmental Chromosome Aberrations

Historically, individual chromosomal loci were analyzed using polymerase chain
reaction or fluorescent in situ hybridization–based assays. Recent studies using tech-
niques that assess the whole genome, such as comparative genome hybridization and
SNP arrays, demonstrate that it is the genomic pattern and not individual losses/gains
that is most prognostic. Tumors with numerical chromosomal abnormalities (NCAs)
characterized by whole chromosome gains and losses have an excellent outcome,
even in patients greater than 18 mo. In contrast, patients with segmental chromosome
aberrations (SCA), characterized by gains and losses of smaller fragments, have an
inferior outcome.102,103 SCAs may be a particularly strong predictor of poor outcome
in infants with locally unresectable or metastatic non-MYCN amplified tumors.104 Pro-
spective trials in North America and Europe will determine whether the presence of
SCAs (�1 of the following: segmental loss at 1p, 3p, 4p, 11q or gain at 1q, 2p, or
17q) can distinguish less favorable subsets of patients within the non-HR groups of
patients and potentially replace tests that detect single gene losses/gains.

DNA Content

Ploidy or tumor DNA content (chromosome number) is a powerful predictor of survival.
Hyperdiploid tumors (DNA index >1) with an increased amount of DNA in comparison
with diploid tumors (DNA index 5 1) are associated with a more favorable prog-
nosis.105,106 Ploidy is most prognostic in infants and patients with localized dis-
ease74,107 and has been used prospectively to inform risk assignment and tailor
therapy for patients with non-HR NB.108

Somatic Gene Mutations

Recently, next-generation sequencing approaches have revealed that, in contrast to
adult carcinomas, there is a striking lack of recurrent NB tumor (somatic) muta-
tions.109–112 The most commonly mutated gene is ALK (8%–10%), with an additional
3% harboring ALK amplification.10 ALK genomic aberrations are detected in all
risk groups and are associated with an adverse outcome,33 and high levels of ALK
protein or amplification may correlate with poor outcomes independent of mutation
status.32,113,114 Mutations in ATRX (alpha thalassemia/mental retardation syndrome
X linked), which is involved in telomere maintenance, are detected more frequently
in older patients with NB.112 Deletions and point mutations of the chromatin remodel-
ing proteins AT-rich interactive domain 1A and B (ARID1a/1b) were detected in 11% of
tumors.111 Other mutations detected in less than 5% of tumors include MYCN, TP53,
PTPN11, and genes involved in Ras/MAPK signaling. Current studies are exploring
whether mutations may be more common at recurrence115 and whether epigenetic
regulation of transcription and genomic organization, which has recently been re-
ported to be involved in the medulloblastoma,116 may be playing similar roles in NB.

Molecular Factors and Expression Signatures

Because recurrent mutations are not frequent in NB, the identification of genes and
signaling pathways with altered expression have also been used to discover additional
prognostic factors and therapeutic targets involved in NB differentiation, apoptosis,
drug resistance, angiogenesis, metastasis, and inflammation. Extensive reviews of
these molecular factors have been the subject of several recent reviews,49,117,118

and a subset of the most well studied are included later.
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Neurotrophin signaling has central roles in normal neuronal cell development, and
the clinical and biological roles of TRK receptors (NTRK1, 2, 3 encoding TrkA, B, C)
and their ligands (NGF, BDNF, and NT-3) have been extensively studied in NB
(reviewed in Ref.119). TrkA expression is highest in tumors with favorable biological
characteristics and outcomes, and TrkA induces apoptosis and/or differentiation
in vitro. TrkA signaling has been implicated in mediating spontaneous regression
that is often observed in infants with localized or stage 4S disease.120 In contrast,
TrkB has pro-proliferative and migratory properties, enhances chemoresistance,
and is highly expressed in biologically unfavorable MYCNA NB. Although the TrkB in-
hibitor lestaurtinib did not show efficacy in a phase 1 trial,121 trks and proteins involved
in neural crest development and differentiation pathways may still represent potential
therapeutic targets.
Disruption of proteins involved in apoptotic pathways, including multidrug-

resistance proteins, such as MDR-1, bcl-2 family proteins, caspase-8, mTOR/PI3
kinase, and TP53/HDM2, have also been shown to play important roles in NB initiation
and progression. There are many ongoing pre-clinical studies to determine the ability
to pharmacologically target these pathways.122–126 Many genes involved in NB,
including caspase 8 and the RASSF1A tumor suppressor, are inactivated by the pro-
moter hypermethylation,126–128 which contributes to resistance to apoptosis induced
by many therapies. Demethylating agents, such as decitabine, have been tested in
phase I studies.129 Enhanced angiogenesis and high expression of proangiogenic fac-
tors, such as vascular endothelial growth factor and basic fibroblast growth factor are
associated with more aggressive NB tumors; early phase clinical trials of drugs that
block these pathways have been completed.130–132

Rather than focusing on specific candidate genes, several investigators have iden-
tified multigene expression profiles that predict outcome and may lead to further
refinement of risk categories. One large study demonstrated that the expression of
59 genes was an independent predictor of outcome, even after controlling for currently
used risk factors, with an odds ratio of 19.3 for OS and 3.96 for progression-free
survival.133 Additional retrospective studies have identified other multigene classifiers
(ranging from 3 to >50 genes).134–138 Although most of these signatures have not been
studied in specific NB risk groups, Asgharzadah and collegues139,140 recently demon-
strated that a 14-gene classifier can be used to specifically identify subsets of HR pa-
tients with the worst prognosis. Many of these signatures include genes implicated in
NB pathogenesis, neural development, and inflammation/immune response. Recent
reports also demonstrate prognostic profiles of microRNAs, small 22 to 25 nucleotide
RNAs that inhibit protein translation or target mRNA degradation141–143 (reviewed in
Ref.144).
MANAGEMENT GOALS

Diagnosis and therapy requires a multidisciplinary approach. Surgical biopsy is usually
required to assess tumor genetic and histologic features and is most critical for
patients less than 18 months of age with metastatic disease and those with
localized unresectable tumors. The improved understanding of NB biology and its
impact on prognosis has resulted in successful tailoring based on risk stratification
(low risk, IR, and HR) using many of the pretreatment clinical and biological risk
factors discussed earlier (see Box 4, Table 2). The requirements for further surgical
resection, chemotherapy, radiotherapy and/or immunotherapy is based on the
patients’ specific risk category (Table 3) and, in part, response as outlined in the Inter-
national Neuroblastoma Response Criteria, which is currently under revision. When
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possible, exposure to chemotherapy is limited for patients with regional disease,
whereas radiotherapy is limited to those with advanced disease with unfavorable
characteristics.

Low Risk

Survival rates for patients with INSS stage 1 disease, regardless of biological factors,
are excellent with surgery alone and rare recurrences can often be cured with salvage
chemotherapy.145,146 Similarly, chemotherapy can be omitted for most patients with
biologically favorable but incompletely resected localized tumors (INSS 2A, 2B),
with survival rates greater than 95%.82,146–148 In general, for patients with INSS stage
1, 2A, and 2B (mostly INRG stage L1), chemotherapy is reserved for patients with
localized NB who have life- or organ-threatening symptoms or the minority of patients
who experience recurrence or progressive disease.
Because previous infant screening studies15,16,149–151 and European trials152,153

have suggested that subsets of biologically favorable NB can spontaneously differen-
tiate and regress, a recent COG trial (ANBL00P2) studied whether infants less than
6 months of age with small localized adrenal masses (including those detected by pre-
natal ultrasound) could be observed without biopsy, surgery, or chemotherapy.154

Eighty-one percent of patients demonstrated spontaneous regression without surgical
intervention; the 3-year EFS and OS were 97% and 100%, respectively.
Like many localized tumors in infants, most of stage 4S NBwithoutMYCNA undergo

spontaneous regression.59,155 Chemotherapy or low-dose radiotherapy is reserved for
symptoms of large tumors or massive hepatomegaly causing mechanical obstruction,
respiratory distress, and/or liver dysfunction and should be initiated as soon as
possible to prevent the morbidity and mortality frequently associated with this form
of the disease, especially in very young infants.105,156,157

Overall, these data support continued reduction of chemotherapy exposure and
surgery for most low risk asymptomatic patients, while strategies to improve survival
for the rare subsets of non-HR patients with unfavorable pathology or biology (eg,
Table 3
Treatment strategies based on risk group (COG)

Low (40%) IR (20%) HR (40%)

Survival (EFS) >95 80–95 40–50

Patient/tumor
characteristics

� Localized, resectable
tumors

� Localized
unresectable

� Infants with
metastases
(no MYCNA)

� Metastases >18 mo
� Unresectable with

unfavorable biology
(eg, MYCNA)

Treatment Observation OR surgery
(chemotherapy only for
symptoms (eg, stage 4S
or cord compression))

Chemotherapy
(2–8 cycles based
on biology),
surgery

Chemotherapy, surgery,
radiation, myeloablative
therapy with autologous
stem cell rescue,
immunotherapy and
biological agents
(isotretinoin)

Summarized are general treatment strategies and characteristics for each risk group based on
recent COG trials. This chart includes the most common characteristics for each group and overall
treatment strategies. These treatments may vary across different cooperative groups internation-
ally and change based on ongoing and future clinical trials. The approximate relative proportion of
patients in each risk group is based on data from the COG ANBL00B1 Biology Study (since 2001).64
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diploid tumors with SCAs)82,158 are being examined in prospective SIOPEN and COG
trials.64

Intermediate Risk

IR classification encompasses a wide spectrum of disease for which surgical resection
and moderate-dose multiagent chemotherapy are the backbone of most regimens. IR
includes subsets of patients with INSS stage 3 (mostly INRG L2) disease and infants
with stage 4/M disease with favorable biological features. Survival following surgical
resection and moderate-dose chemotherapy, including carboplatin or cisplatin, doxo-
rubicin, etoposide, and cyclophosphamide, is greater than 90% for children whose
tumors exhibit favorable characteristics, including infants with stage 4/M who lack
MYCNA.159–161 These high survival rates were maintained in 2 prospective COG IR
trials in which therapy was reduced further based on histology, ploidy, and 1p and
11qLOH status.108,157 Small series have suggested that IR patients with localized
NB with favorable biology can be observed without chemotherapy.153,162 Ongoing
prospective international trials will determine whether SCA status can be used to
refine treatment assignment to further reduce, and in some cases eliminate, therapy
for most IR patients with favorable histology and genomics.

High Risk

Outcome of HR patients (mainly stage 4 > 18 months of age and stage 3 MYCNA or
stage 3 > 18 months with unfavorable histology tumors) remains poor despite im-
provements in survival (Fig. 5).163–168 Standard HR therapy involves 3 components:
(1) induction chemotherapy and local control, (2) consolidation, and (3) postconsolida-
tion/maintenance. These regimens have evolved significantly over the past 20 years
based on work by several international cooperative groups and smaller cohort studies
summarized later.

Induction therapy
There is a correlation between survival and end-of-induction response63,169; despite
chemotherapy dose intensification, approximately 20% of patient will progress or
have inadequate response to induction therapy. Standard North American (COG) in-
duction regimens include combinations of anthracyclines, alkylators, platinum com-
pounds, and topoisomerase II inhibitors delivered every 21 days for 5 to 7 cycles.
SIOPEN uses a rapid regimen whereby cycles are delivered every 10 days based
on results that demonstrated superior 5-year EFS of 30%, compared with 18% for
standard interval chemotherapy.165 The topoisomerase I inhibitor topotecan, which
has demonstrated efficacy in recurrent NB,170 has recently been incorporated into
COG induction regimens.64,171

Local control
Optimal local control is achieved with a combination of aggressive surgical resection
and external beam radiotherapy to the primary tumor. Surgery of the primary and
bulky metastatic disease is usually delayed until after 4 to 6 cycles of chemotherapy
to improve resectability and minimize complications172; however, there are conflicting
reports as to whether complete primary tumor resection impacts patient outcomes in
HR NB.173–176

NB is one of the most radiosensitive pediatric solid tumors, and doses of 2160 cGy
in daily 180 cGY fractions to the primary sites decrease local recurrence rates for HR
patients.177,178 A recently completed prospective COG trial will determine whether
higher radiation doses delivered to incompletely resected tumors improves local con-
trol rates. Radiation is also often delivered to residual MIBG-avid metastatic sites, and
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Fig. 5. Survival for HR patients with NB based on treatment era. The EFS (A) and OS (B)
Kaplan-Meier survival curves calculated from the time of diagnosis for children enrolled
onto COG (since 2001) and Children’s Cancer Group and Pediatric Oncology Group Neuro-
blastoma Biology trials between 1990 and 2010 (N 5 3389) shown in 5-year intervals, begin-
ning in 1990. (With permission from Children’s Oncology Group Statistical Data Center.)
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a recent report suggests that nonirradiated lesions have a higher likelihood of involve-
ment at the time of first relapse.179

Myeloablative consolidation therapy
Over the past 2 decades, several clinical trials performed in Germany, Europe, and
North America demonstrated improved outcomes following myeloablative therapy
(MAT) with autologous bone marrow or, more recently, autologous peripheral blood
stem cell rescue as compared with maintenance chemotherapy or observa-
tion.167,169,180,181 These data together with a recent Cochrane systems meta-
analysis suggest that MAT has resulted in improvements in EFS.182 Recent and
ongoing trials are aimed at identifying the optimal intensity and chemotherapy combi-
nations for MAT regimens. Preliminary SIOPEN results suggest that patients random-
ized to a Busulfan-Melphalan (Bu-Mel) regimen had outcomes superior to those who
received carboplatin-etoposide-melphalan.175 Before adoption of Bu-Mel, the COG
and other groups are examining the efficacy and toxicities of Bu-Mel MAT in combi-
nation with different induction regimens and postconsolidation immunotherapy.64 In
addition, data will soon be available from COG study ANBL0532, which randomized
patients to single and tandem MAT and was based on a limited institution tandem
MAT study with 3- and 5-year EFS rates of 55% and 47%.183 Future trials will also
aim to identify those at highest risk for recurrence and assess whether additional ther-
apies during induction or consolidation improve their outcome.64

Postconsolidation biologic and immunotherapies
Initial results from CCG-3891 demonstrated efficacy for the synthetic retinoid isotret-
inoin [cis-retinoic acid (cis-RA)] in treating minimal residual NB after MAT and estab-
lished a standard for the use of noncytotoxic differentiation therapy for minimal
residual disease.164 A recent randomized-controlled trial led by Yu and colleagues166

demonstrated that the addition of the anti-GD2 chimeric monoclonal antibody (mAb) in
conjunction with cytokines (granulocyte-macrophage colony-stimulation factor and
interleukin 2) improved survival, establishing a role for immunotherapy in the standard
treatment of HR patients. Additional studies have shown efficacy for different anti-GD2
regimens at diagnosis and recurrence.184,185 Future immunotherapy regimens are
aimed at determining the importance of cytokines andmAb and examining biomarkers
that may predict which patients are most likely to respond favorably to this regimen,
which has many side effects, including allergic reactions, fever, hypotension, capillary
leak syndrome, and pain (caused by cross-reactivity with GD2 expressed on periph-
eral nerve cells). Early phase trials are also examining different antibodies and addition
of immunomodulators (see “Recurrence” section).

LATE EFFECTS

There are few comprehensive reports of the prevalence of long-term effects in NB sur-
vivors, in part because of the poor prognosis for HR NB. Late effects are generally
related to chemotherapy/radiation dose intensities, with the highest toxicities in
patients who underwent MAT.186–190 Recent pharmacogenomic studies have begun
to identify germline variants or SNPs that may predict which patients are most suscep-
tible to specific chemotherapy toxicities.191 Ototoxicity, renal dysfunction, and endo-
crine late effects, including hypothyroidism, ovarian dysfunction and infertility, have
been detected in most HR patients with NB.186 Secondary cancers, most commonly
myelodysplastic syndrome and acute myelogenous leukemia, have been reported in
1% to 8% of patients enrolled on trials and small series of NB survivors187,192,193

and have been attributed to etoposide exposure, radiation, high-dose MIBG, and
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other agents. In addition to hematopoietic malignancies, solid tumors of the thyroid,
bone, and kidney have been reported. Patients may also have effects related to tumor
location, such as visual impairment caused by orbital metastases and neurologic com-
plications or scoliosis following spinal cord compression.194,195
RECURRENCE

Despite recent advances, greater than 50% of patients with HR NB experience tumor
recurrence. Although there are no proven curative therapies, some patients achieve
prolonged survival even after multiple relapses. In the INRG database, low/IR patients
with NB who relapsed had an OS of 65% 5 years after recurrence, whereas for those
with metastatic disease, 5-year OS was 8%.96 Thus, research into novel therapies is a
high priority and has been the subject of several recent reviews.117,196,197

Relapse strategies can be divided into chemotherapies, MIBG/radioisotopes, im-
munotherapies, and targeted therapies. Current phase I and II trials often involve com-
binations of these approaches. Cytotoxic chemotherapies commonly used for relapse
include topotecan or irinotecan-based regimens170,198–200 as well as ifosfamide, car-
boplatin, etoposide201 and often result in transient responses or stable disease but
poor long-term survival. Iodide-131- MIBG, which targets high doses of radiation to
NB cells, is the most effective single agent for relapsed NB, with response rates
greater than 30%.202–205 Current MIBG trials will determine the efficacy of concurrent
radiosensitizing chemotherapies and feasibility of delivering MIBG followed by MAT to
potentially incorporate MIBG into upfront therapy for HR NB.64

Building on the success of anti-GD2 mAbs, novel approaches to enhance mAb
efficacy, such as the addition of lenolidomide,206 which activates natural killer cells,
and active immunization with anti-idiotype antibodies, are being studied in relapsed
patients.207 Among the most promising phase I trials are those that use a patient’s
own cytotoxic T cells (CTLs) that can be redirected against tumor-associated antigens
(eg, GD2, L1CAM). Autologous CTLs engineered to overexpress chimeric antigen re-
ceptors are infused and have been shown to persist and demonstrate antitumor activ-
ity in patients with NB.208–211

There are several potential targets, and respective inhibitors, for recurrent NB
based on preclinical and, in certain cases, phase I trials. A subset of ALK aberrant tu-
mors can be targeted with crizotinib, and trials with second-generation ALK inhibitors
and combinations with chemotherapy are underway.37,92,212 For patients with
MYCNA, preclinical studies suggest that bromodomain and extraterminal domain
(BET) inhibitors can induce cell death by interfering with MYCN transcription.91 Other
drugs that have effects on MYCN stability (aurora kinase A and mTOR inhibitors)213 as
well as those that target MYC-dependent metabolic changes214 are being studied.
There is significant interest in drugs, such as histone deacetylase inhibitors, that are
less targeted and instead modulate the expression of many genes to induce death,
differentiation, and enhance the response to chemotherapies in NB cells.215 Other
drugs targeting cell cycle (eg, Chk1, Wee-1, CDK4/6), angiogenesis, and differentia-
tion are also under investigation.196

Current trial designs for patients with relapsed NB have incorporated novel
approaches, such as pick the winner whereby patients are randomized to receive
different novel agents in combination with a common chemotherapy backbone regi-
mens. In addition, many early phase NB trials will incorporate precision medicine by
tailoring treatment based on individual patient tumor aberrations. These studies will
increasingly depend on genomic and molecular studies of tumors, particularly at the
time of relapse, when mutations may be more common.216
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FUTURE DIRECTIONS

NB is a heterogeneous tumor for which molecular and genetic determinants affect
clinical behavior. Further advances in the understanding of aberrantly expressed
genes and pathways will continue to inform and refine risk stratification and treatment
and identify novel therapeutic targets. For patients with low risk and IR NB, these
genetic factors will help to identify rare patients who still require treatment as we
continue to reduce exposures to chemotherapy and surgery for most non-HR
patients. In contrast, for HR patients, we need to better predict those at greatest
risk of treatment failure or recurrence, either at diagnosis (eg, genetic signatures) or
based on their response to treatment (eg, persistent MIBG positive metastases).
Furthermore, molecular and genetic studies of tumors at the time of recurrence will
be required to specifically identify targets in this chemoresistant population. Interna-
tional collaborations, including INRG databases, are critical for the development of
risk stratification and response classifications as well as advances in basic and trans-
lational studies, especially for rare populations (eg 4S, OMS). Future studies will move
toward more refined risk classifications and treatments based on individual tumor ab-
errations as well as more attention to survivors to better understand the extent and
individual susceptibility to long-term side effects of our treatments.
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