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H I G H L I G H T S

� Synaptic inspecificity (cross talk) may affect the outcome of a Hebbian learning rule.
� We analyze the equilibria and stability of the 2-dimensional inspecific Oja rule.
� A phase plane bifurcation occurs at critical cross talk value, only for unbiased inputs.
� A different normalization scheme, and a stochastic version are presented.
� We suggest an application to ocular segregation; we compare cortical proofreading with DNA copying.
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a b s t r a c t

Hebbian synapses respond to input/output correlations, and thus to input statistical structure. However, recent
evidence suggests that strength adjustments are not completely connection-specific, and this “crosstalk” could
distort, or even prevent, learning processes. Crosstalk would then be a form of adjustment mistake, analogous
to mistakes in polynucleotide copying. The mutation rate must be extremely low for successful evolution
(which is a type of learning process), and similarly neural learning might require minimal crosstalk. We analyze
aspects of the effect of crosstalk in Hebbian learning from pairwise input correlations, using the classical
Oja model.

In previous work we showed that crosstalk leads to learning of the principal eigenvector of EC (the input
covariance matrix pre-multiplied by an error matrix that describes the crosstalk pattern), and found that, with
positive input correlations, increasing crosstalk smoothly degrades performance. However, the Oja model
requires negative input correlations to account for biological ocular segregation. Although this assumption is
biologically somewhat implausible, it captures features that are seen in more complex models. Here, we
analyze how crosstalk would affect such segregation.

We show that, for statistically unbiased inputs, crosstalk induces a bifurcation from segregating to non-
segregating outcomes at a critical value which depends on correlations. We also investigate the behavior in the
vicinity of this critical state and for weakly biased inputs.

Our results show that crosstalk can induce a bifurcation under special conditions even in the simplest
Hebbian models, and that even the low levels of crosstalk observed in the brain could prevent normal
development. However, during learning pairwise input statistics are more complex, and crosstalk-induced
bifurcations may not occur in the Oja model. Such bifurcations would be analogous to “error catastrophes” in
genetic models, and we argue that they are usually absent for simple linear Hebbian learning because such
learning is only driven by pairwise correlations.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation

There has been sustained interest in the possibility that learn-
ing and synaptic plasticity might not just be complementary

(Baldwin, 1909; Hinton and Nowlan, 1987) to Darwinian evolution
and adaptation, but physically analogous (Edelman, 1987; Young,
1979; Jerne, 1994; Changeux et al., 1973.; Calvin, 1996; Fernando
et al., 2010). Such analogies would be particularly fruitful if they
pointed to new interpretations of hitherto obscure aspects of
physiology or anatomy. Perhaps the simplest, most direct analogy,
and one with interesting implications for neocortical machinery, is
the possibility that mutations (mistakes in copying DNA) are
comparable to anatomical errors in the strengthening of synaptic
connections thought to underlie learning. By “anatomical errors”
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we mean that the spiking activity of particular connections might
induce changes (strengthening or weakening) not only of that
connection, as envisaged in most theoretical models of synaptic
plasticity, but also of other connections (for example, of those that
are composed of synapses that are physically very close to the
synapses directly involved in the active connection). Such Hebbian
“inspecificity” or “crosstalk” might involve changes in existing but
inactive connections, or even creation of new connections (Adams,
1998; Le Bé and Markram, 2006). Molecular evolution models
show that asexual adaptation can only occur if the per base
mutation rate is, roughly, less than the reciprocal genome length
(Eigen, 1971). In particular, the equilibrium behavior of such
models shows a dynamical bifurcation – an “error catastrophe” –

at a critical mutation rate, at least in the large genome limit
(Saakian and Hu, 2004; Schuster and Swetina, 1988). Indeed,
successive improvements in copying fidelity have marked many
of the major biological transitions (Smith and Szathmary, 1997),
such as that from the RNA world to the DNA/protein world, and
the appearance of proofreading replicases. Indeed, there is some
evidence that sex itself is prevalent because it relaxes the critical
error limit (Ridley, 2001; Otto, 2009).

Synaptic plasticity is often Hebbian (dependent on both input
and output firing) and perhaps the simplest formal model of
Hebbian learning is that of Oja (1982), who showed that a Hebbian
neuron could act as a principal component analyzer, since linear
Hebbian learning is driven by the input covariance matrix. In this
model, the input second order correlations essentially constitute
the learning environment. It has been recently suggested that the
Oja equation (even without errors) might have mathematical
analogies to the Eigen replication/mutation equation (Fernando
and Szathmáry, 2009; Fernando et al., 2010). However, we have
shown (Radulescu et al., 2009) that connectional plasticity inspe-
cificity (also known as “crosstalk”) does not usually generate a
dynamical bifurcation in the Oja model: the leading eigenvector of
the controlling matrix (the product of the error matrix and the
covariance matrix) remains stable at all error rates, and changes
direction only in a smooth manner. Here we analyze one impor-
tant exception to this conclusion: when the input correlations
are both negative and uniform. This case is of interest because it
has been previously discussed in relation to the well-known
development of binocular input segregation (Dayan and Abbott,
2002; Miller and MacKay, 1994; Elliott, 2003, 2008; Bienenstock
et al., 1982). Nevertheless, we conclude that the crosstalk Oja
model does not generally show the type of “error catastrophe”
seen in molecular evolution. However, rather than showing that
this invalidates possible analogies between Darwinian evolution
and Hebbian learning, it might merely highlight the limitations of
linear Hebbian learning, which is driven only by second order
correlations. We propose that the full set of input correlations,
both second and higher-order, constitutes the learning environ-
ment. Other recent work shows that Hebbian learning driven by
higher order correlations does indeed show a crosstalk-induced
dynamical bifurcation (Cox and Adams, 2009; Elliott, 2012),
suggesting that mechanisms analogous to proofreading and sex
(Adams and Cox, 2012, 2006) might play an important role in
neural adaptation.

1.2. Background

Learning is thought to occur as a result of changes in synaptic
strength triggered by pre- and postsynaptic neural activity, in a
“Hebbian” manner. Such changes are not completely specific to the
synapses at which the activity occurs (Harvey and Svoboda, 2007;
Bi, 2002; Engert and Bonhoeffer, 1997), because of inevitable albeit
minimal second-messenger diffusion.

Oja (1982) showed that a simple model neuron could perform
unsupervised Hebbian learning of the first principal component of
an input distribution. In this model, unlimited weight growth is
prevented using an additional term in the learning rule, producing
an implicit, “multiplicative” weight normalization (Malsburg,
1973). Biological synapses do show Hebbian properties, using
well-understood, spike-coincidence detection machinery, raising
the possibility that real neurons can exhibit similar unsupervised
learning. Finding principal components, or related second order
statistics, could be very useful in the brain for data compression
and transmission (Atick and Redlich, 1992; Srinivasan et al., 1982).
Furthermore, representational learning often requires that inputs
will be pairwise decorrelated. Hebbian learning can also explain
developmental changes, such as the segregation of visual input to
central neurons (Wimbauer et al., 1997a,b, Wimbauer et al., 1998).

Recent data suggest (Harvey and Svoboda, 2007; Bi, 2002;
Engert and Bonhoeffer, 1997) that weight updates may be affected
by each other, for example due to unavoidable residual second
messenger diffusion between closely spaced synapses. We have
suggested that such crosstalk is analogous to mutation in genetics,
and that cortical circuitry may be specialized to reduce it (Adams
and Cox, 2002a, 2006). However, it is not clear that learning would
be subject to an “error catastrophe” such as that occurring in
genetic systems (Eigen, 1971). If complete learning failure does not
occur at a critical, low, crosstalk level, such circuitry might not be
necessary.

In a recent paper (Radulescu et al., 2009) we examined how
crosstalk would affect the Oja model. We considered a learning
network consisting of a single output neuron receiving, through a
set of n input neurons, n signals x¼ ðx1;…; xnÞT drawn from a
probability distribution PðxÞ, xARn, transmitted via synaptic con-
nections of strengthsω¼ ðω1;…;ωnÞT . The resulting scalar output y
was generated as the weighted sum of the inputs y¼ xTω.

The synaptic weights ωi were modified in accordance with
Oja's rule of learning, by implementing first a Hebb-like strength-
ening of each ωi proportionally with the product of xi and y (with
small constant of proportionality, or learning rate, γ), followed by
an approximate “normalization” step (applicable for small γ and
JωJ close to one), maintaining the Euclidean norm of the weight
vector ω¼ ðω1;…;ωnÞT close to one. We considered the long-term
average of this Oja equation, using the input covariance matrix
C¼ 〈xxT 〉 as an appropriate characterization of the inputs, and
studied the long-term behavior of the conditional expectation
wðtÞ ¼ 〈ωðtþ1ÞjωðtÞ〉, given by the continuous time differential
equation:

dw
dt

¼ γ½Cw�ðwTCwÞw�

We then introduced inspecificity into the learning equation
(Radulescu et al., 2009). We implemented this inspecificity by assum-
ing that, on average, only a fraction q of the intended update reaches
the appropriate connection, the remaining fraction 1�q being dis-
tributed amongst the other connections (following a rule which we
defined according to plausible underlying biology). The quality factor
q is analogous to a similar factor in molecular evolution theory that
represents the fidelity of single-base copying (Swetina and Schuster,
1982). The actual update at a given connection thus includes con-
tributions from erroneous or inaccurate updates from other connec-
tions. The erroneous updating process was formally described by an
error matrix E, independent of the inputs, whose elements, which
depend on average on q, reflect at each time step t the fractional
contribution that the activity through the connection with weight ωi

makes to the update of ωj:

ωiðtþ1Þ ¼ωiþγyð½Ex�i�yωiÞ
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The long-term, continuous-time statistics can be then written in
matrix form as

dw
dt

¼ γ½ECw�ðwTCwÞw� ð1Þ

where the average “error matrix” E¼ 〈E〉 is a symmetric matrix with
positive entries, which equals the identity matrix IAMnðRÞ in case of
perfect quality updates. Throughout the paper, we call this the
(inspecific) Oja rule with continuous time updates, and we use the
notation f EðwÞ ¼ γ½ECw�ðwTCwÞw�. One may notice that the inspe-
cific rule does not perform the same approximate normalization of w
as the original continuous-time Oja rule; under Eq. (1), the norm of w
remains bounded, without having to become eventually close to one
(see details below). Clearly one can modify the rule by performing an
exact normalization, and thus keep w of unit length and study one-
dimensional dynamics on the circle. In this paper, we analyze
extensively the first case (Section 2), but we also briefly study the
case of exact normalization (Section 3).

We (Radulescu et al., 2009) and others (Botelho and Jamison,
2004) have studied the asymptotic behavior of the n-dimensional
system defined by f EðwÞ. We started with a local linear analysis of
the equilibria and their stability. Although this rule is nonlinear,
the Hebbian update term is linear in the output, and we some-
times refer to this, and related, rules, as being “linear,” in contrast
to other Hebbian rules (Hyvärinen and Oja, 1998; Hyvärinen et al.,
2001; Bell and Sejnowski, 1995; Olshausen et al., 1996; Elliott,
2003; Földiák, 1990; Cooper, 2004) which are nonlinear in the
output.

Note that the symmetric, positive definite matrix CAMnðRÞ
defines a dot product between any two vectors w and v in Rn as
〈v;w〉C ¼ vTCw. Although both C and E are symmetric, the product
EC is not symmetric in the Euclidean metric. However, in a
new metric defined by the dot product 〈�; �〉C, EC is symmetric:
〈ECu; v〉C ¼ ðECuÞTCv¼ uTCTETCv¼ uTCECv¼ 〈u;ECv〉C, for all u;
vARn. Hence EC has a basis of eigenvectors, orthogonal with
respect to the dot product 〈�; �〉C. The following description of
equilibria w¼ ðw1…wnÞT such that ECw¼ ðwTCwÞw is immediate:

Description of equilibria: The equilibria of the system (1) are
w¼ 0 and all eigenvectors of EC (with corresponding eigenvalue
λw), normalized, with respect to the norm ‖ � ‖C ¼ 〈�; �〉C, so that
‖w‖C ¼ λw .

At any equilibrium w of the system (1), the Jacobian matrix
of f E around w is (see Appendix A.1 for a complete calculation)

Df Ew ¼ γ½EC�2wðCwÞT�ðwTCwÞI� ð2Þ

Then we have the following (see Appendix A.1 for proof):
Stability criteria for equilibria: Suppose EC has a multiplicity one

largest eigenvalue. A normalized eigenvector w is a local hyper-
bolic attracting equilibrium for (1) iff it corresponds to the
maximal eigenvalue of EC.

Such attractors always exist provided EC has a maximal
eigenvalue of multiplicity one, a property which is generic for EC
(Radulescu et al., 2009). When assuming a unique leading eigen-
value, the corresponding eigendirection is orthogonal in 〈�; �〉C to all
other eigenvectors of EC. Then the network learns, depending on
its initial state, one of the two stable equilibria, which are the two
(opposite) maximal eigenvectors of the modified input distribu-
tion, normalized so that ‖w‖C ¼ λw . It can be shown easily that
these two attractors (the appropriately normalized eigenvectors
corresponding to the maximal eigenvalue of EC) can be the only
attractors in the system (see Appendix B for proof).

In a previous paper (Radulescu et al., 2009), we further
analyzed the sensitivity of the system under variations of para-
meters, for some biologically plausible forms of the covariance and

error matrices:

C¼

vþδ1 c ⋯ c

c vþδ2 ⋯ c

⋮ ⋱ ⋮
c c ⋯ vþδn

2
66664

3
77775 and E¼

q ϵ ⋯ ϵ
ϵ q ⋯ ϵ
⋮ ⋱ ⋮
ϵ ϵ ⋯ q

2
66664

3
77775

where the input covariance matrix had uniform covariances c40
and variance biases δ1Zδ2Z⋯Zδn; the error matrix was defined
such that q4ϵ40, qþðn�1Þϵ¼ 1. Our analysis of this system
concluded that the effect of biologically realistic levels of crosstalk
would typically only produce small gradual changes in the learn-
ing process, though when inputs carry very similar signals, the
effects could be more dramatic. In this paper we explore this “very
similar” scenario more thoroughly. In particular, we describe the
effect of crosstalk in the special “unbiased” case, where the inputs
have identical statistics.

1.3. Biased and unbiased inputs

Our previous analysis considered only distributions of inputs
with a bias in the covariance matrix (we imposed the condition that
EC has a leading eigenvalue of multiplicity one). While this case is
mathematically generic, previous work using related models (with-
out crosstalk, Miller et al., 1989) to study learning in the visual
system, often assumed that the input statistics are “unbiased,” or
identical for each input (for example, because inputs from corre-
sponding points in the left and right eyes represent the same point
in visual space). It is well known that in the two-dimensional case,
if the two inputs x1 and x2 are positively correlated (as one might
anticipate for active vision), linear Hebbian learning does not
predict the observed developmental segregation of visual afferents
(Dayan and Abbott, 2002; Cooper, 2004; Swindale, 1996; Willshaw
and Von Der Malsburg, 1976); negative correlations (or a nonlinear
rule) are required. However, modifications in learning rules, for
example subtractive normalization (Goodhill, 1993; Willshaw and
Von Der Malsburg, 1976; Miller and MacKay, 1994; Linsker, 1986), a
weight-dependent rule (Elliott and Shadbolt, 2002) or a BCM rule
(Cooper, 2004), although not always originally developed to explain
segregation, can overcome this difficulty. Subtractive rules lead to
Hebbian learning driven by a modified version of the covariance
matrix. In the current work, we examine the dynamics of Oja
learning with crosstalk when inputs are unbiased, and how this
changes when a slight bias is introduced.

We show here that in the unbiased negative correlation case, the
system undergoes a bifurcation in dynamics at a critical crosstalk
level. Related results have been obtained by Elliott (2012) and Cox
and Adams (2009). While there is no true bifurcation in the near-
unbiased case, the very dramatic change in learning that occurs over
a small error range would be biologically indistinguishable from a
true bifurcation. We discuss our results in relation to models of
development and learning.

1.4. A reduced, two-dimensional model

In this paper, we will consider the continuous-time, two-
dimensional nonlinear rule of Oja (i.e., for two input channels
and one output), with covariance matrix C and error matrix E
symmetric matrices having the forms

C¼ vþδ c

c v

 !

and

E¼
q 1�q

1�q q

 !
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The parameters are such that 1=2oqr1, v40 and co0, such
that v4 jcj, v4 jδj and vðvþδÞ4c2 (i.e., detðCÞ40). The 2D system
expands to

_w1 ¼ ½qðvþδÞþð1�qÞc�w1þ½qcþð1�qÞv�w2�½vw2
1þ2cw1w2þvw2

2�w1

_w2 ¼ ½ð1�qÞðvþδÞþqc�w1þ½ð1�qÞcþqv�w2�½vw2
1þ2cw1w2þvw2

2�w2 ð3Þ
The rest of the paper is centered around this 2-dimensional

model. In Section 2, we establish the mathematical background of
the model's behavior. We analyze some of its local and global
dynamics, observe the dependence of these dynamics on para-
meters and discuss bifurcations. One of the phenomena central to
our interest is how the behavior of the system changes when the
bias parameter δ varies, in particular when it approaches zero
(i.e., the inputs are very close to a perfectly unbiased state).
In Section 3, we discuss an alternative, direct normalization,
model. In Section 4 we explore stochastic versions of the model.
In the Discussion, we embed the results in the context of visual
modeling and ocular segregation of inputs.

2. Linear analysis of the 2D dynamics

2.1. Spectrum of the 2D system

We notice that the phase plane of the system is symmetric
about the origin (i.e., if w(t) is a solution curve for the system, then
�wðtÞ is as well). The trace, determinant and eigenvalues of EC can
be obtained easily as expressions of the system parameters:

detðECÞ ¼ detðEÞdetðCÞ ¼ ð2q�1Þ½vðvþδÞ�c2�40
trðECÞ ¼ 2ð1�qÞcþqð2vþδÞ40
ðfrom the Cauchy�Schwartz inequalityÞ:

Lemma 2.1. For all parameter values, EC has two real eigenvalues
μ1;2, which are distinct unless the conditions δ¼ 0 and q¼ qn

¼ v=ðv�cÞ are simultaneously satisfied. More precisely, when
qaqn, we have

μ1 ¼
2ð1�qÞcþqð2vþδÞþ

ffiffiffiffi
Δ

p

2
larger eigenvalue; with eigenline of slope

z1 ¼
�qδþ

ffiffiffiffi
Δ

p

2β

μ2 ¼
2ð1�qÞcþqð2vþδÞ�

ffiffiffiffi
Δ

p

2
smaller eigenvalue; with eigenline of slope

z2 ¼
�qδ�

ffiffiffiffi
Δ

p

2β

where β¼ qcþð1�qÞv and Δ¼ ½2qcþð1�qÞð2vþδÞ�2þð2q�1Þδ2.

Proof. The calculation of eigenvalues and eigenvectors is immedi-
ate from the characteristic equation of EC: X2�trðECÞXþdetðECÞ ¼
0, with discriminant

Δ¼ trðECÞ2�4 detðECÞ ¼ ½2qcþð1�qÞð2vþδÞ�2þð2q�1Þδ2

Notice that ΔZ0, with equality Δ¼ 0 (i.e., double eigenvalue for
EC) iff both δ¼ 0 and β¼ 0. The critical quality value (where the
two eigenvalues are equal, producing a switch in the dynamics
when δ¼ 0) is qn ¼ v=ðv�cÞ. Since v4 jcj, this value occurs within
the appropriate q range, ð1=2;1� (see Fig. 1). □

2.2. Equilibria of the 2D system

Throughout this section, in addition to working in our generally
specified parameter ranges, we will assume that EC has distinct

eigenvalues (i.e., δa0 or qaqn). In this case, the system has as
equilibria the origin w¼ 0, and two pairs of opposite eigenvectors
of EC normalized such that wTCw¼ μ (where μ is the respective
eigenvalues of each pair).

The normalization condition can be written as

wTCw¼ ðvþδÞw2
1þ2cw1w2þvw2

2 ¼ μ

Using the same notation z¼w2=w1, this can be rewritten as
vz2þ2czþðvþδÞ ¼ μ=w2

1, so that

JwJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μðz2þ1Þ
vz2þ2czþðvþδÞ

s

While a explicit formula of JwJ in terms of parameters would be
complicated, the above implicit expression suggests that the norm
varies with both error and correlation (see Fig. 2).

The position and stability of the four nonzero equilibria also
vary with the parameters v; c; δ and q. If we aim to study the
sensitivity of the system's dynamics under parameter perturba-
tions, the next step should be establishing the linear stability of
these equilibria. It is easy to show, using Proposition A1 (from
Appendix A.1) that

Description and stability of equilibria: Suppose the matrix EC has
distinct eigenvalues. The system (3) has five distinct equilibria,
w¼ 0 and four normalized eigenvectors of EC. The two (opposite)
eigenvectors of the larger eigenvalue are hyperbolic attractors, and
the two (opposite) eigenvectors corresponding to the lower
eigenvalue are saddles. The origin is repelling.

More precisely, this means that if μw is the larger eigenvalue of
EC, the Jacobian matrix Df Ew has two negative eigenvalues, hence
w is an attracting node. If instead μw is the smaller eigenvalue of
EC, then Df Ew has two real eigenvalues of opposite signs, and w is a
saddle equilibrium.

We are particularly interested in the behavior near and at δ¼ 0.
The above characterization of equilibria applies when δa0, but it
breaks down in the parameter slice δ¼ 0, at the critical point
when EC has a double eigenvalue. In other words we expect that
the system undergoes a bifurcation in the unbiased δ¼ 0 slice,
which does not exist in the other, δa0 slices (i.e., when “bias” is
present in the inputs), therefore we will study this case separately.

For the following paragraph (Section 2.2) we assume δa0.
The unbiased case δ¼ 0 is discussed separately in Section 2.3. The
results are integrated and concluded in Section 2.4.

2.3. Biased case: rotational dynamics and invariant lines

One way to describe the dynamics of the system, including the
more global aspects and possibly cyclic behavior (which has not
yet been excluded) is to follow the rotational direction of the
solution trajectories in different regions of the ðw1;w2Þ phase-
plane under the velocity field ð _w1 ; _w2 Þ.

Consider the angle θA ½�π=2;π=2� made by the direction
ðw1;w2Þ with the w1 axis. As before, call z¼w2=w1 ¼ tan ðθÞ and
β¼ qcþð1�qÞv. Then, along a trajectory in the ðw1;w2Þ plane,

_z ¼ d
dt

w2

w1

� �
¼ _w2w1� _w1w2

w2
1

¼ ½ð1�qÞðvþδÞþqc��qδz�½ð1�qÞvþqc�z2
¼�βz2�qδzþ½βþð1�qÞδ�

We first want to establish if there are any values of z for which
_z ¼ 0. These are the slopes along which the rotational speed of the
trajectories is zero; in other words, they would correspond to
invariant lines in the phase-plane.

We consider the quadratic equation: _z ¼�βz2�qδzþ½βþ
ð1�qÞδ� ¼ 0. The discriminant is the same as the one of the
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characteristic equation of EC:

Δ¼ q2δ2þ4β½βþð1�qÞδ�
¼ ½2qcþð1�qÞð2vδÞ�2þð2q�1Þδ2

The solutions of the quadratic equation will the be exactly the
slopes of the eigendirections of EC:

z1;2 ¼
�qδ7

ffiffiffiffi
Δ

p

2β
A ½�1; þ1�

proving the following:

Lemma 2.2. The eigendirections of the matrix EC represent invariant
lines under the vector field of system (1).

We want to better describe the phase-plane behavior between
the invariant lines z¼ z1 and z¼ z2. For any fixed qAð1=2; qnÞ [
ðqn;1� (i.e., for βa0), the rotational speed is given by the sign of
the quadratic function f ðzÞ ¼ �βz2�qδzþ½βþð1�qÞδ�. In principle,
we then have two situations:

i. qAð1=2; qnÞ (i.e., β40). Then z14z2, with z40 in ðz2; z1Þ and
zo0 on ð�1; z2Þ [ ðz1;1Þ. The phase plane looks schemati-
cally as in Fig. 3A.

ii. qAðqn;1� (i.e., βo0). Then z1oz2, with zo0 in ðz1; z2Þ and
z40 on ð�1; z1Þ [ ðz2;1Þ. The phase plane looks schemati-
cally as in Fig. 3B.

In other words, all trajectories move asymptotically towards
the invariant line z¼ z1.

Fig. 2. The norm JwJ varies with both quality q and correlation δ. (A) The panel illustrates v¼1 and c¼�0:1. Each color-coded plot represents how the norm JwJ changes as a
function of δ, for a different value of the quality q. (B) The panel illustrates v¼1 and c¼�0:4. Each color-coded plot represents how the norm JwJ changes as a function of δ, for a
different value of the quality q. In both panels, the colors refer respectively to q¼0.55 (green), q¼0.75 (blue), q¼0.95 (red) and critical q¼ qn ¼ v=ðv�cÞ (yellow). (See also Appendix C,
for a more analytical approach.) (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 1. Evolution of the eigenvalues as the quality q is varied, in three different δ slices. δ¼�0:2 (A), δ¼ 0 (B) and δ¼ 0:5 (C). Fixed parameters: v¼1 and c¼�0:4, hence
qn ¼ 1=1:4–0:71. When δ¼ 0, the eigenvalues μ1 and μ2 touch at q¼ qn . For δa0, the two curves avoid this crossing; the minimal distance between them occurs at q¼ qn , but it is
strictly positive.
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Since the behavior of the system seems to be a large extent
dictated by these invariant lines, we study how the positions of
these lines change under variations of the quality parameter q.
In other words, we want to study the monotonicity of z1 ¼ z1ðqÞ
and z2 ¼ z2ðqÞ. We get the following (for detailed proofs and limit-
case behavior limq-qn

7
z1;2, see Appendix C; for illustrations see

Figs. 3 and 4):

Proposition 2.3. If δo0, then dz1;2=dq40 and hence both z1 and z2
are increasing as qAð1=2; qnÞ [ ðqn;1�. In the system's phase plane,
this corresponds to a continuous counter-clockwise rotation of the
two invariant lines. If δ40, then dz1;2=dqo0; hence both z1;2 are in
this case decreasing as qAð1=2; qnÞ [ ðqn;1�. In the phase plane, this
corresponds to a clockwise rotation of the invariant lines.

Proposition 2.4. The angles θ1;2A ½�π=2;π=2� between each invar-
iant line and the w1 abscissa are decreasing with respect to the
parameter q in case δ40, and are increasing with respect to the

parameter q in case δo0.Moreover, in both cases, the angular rate of
change is finite, at all qA ð1=2;1�.

2.4. Unbiased case δ¼ 0

For δ¼ 0 the computations are simpler; however, as mentioned
before, the system has an interesting critical transition which does
not appear in the δa0 slices (occurring from the “touching,” or
apparent crossing, of the two eigenvalues at q¼ qn, as shown in
Fig. 1).

Proposition 2.5. Suppose δ¼ 0. The phase plane of the system
depends on the value of q as follows:

i. If qoqn, then μ1 ¼ vþc is the larger eigenvalue, with eigendirec-
tion z1 ¼ 1 and norm of the corresponding attracting equilibria
JwJ ¼ 1. μ2 ¼ ð2q�1Þðv�cÞ is the smaller eigenvalue, with eigen-
direction z2 ¼�1 and norm of the corresponding saddle equilibria
JwJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�1=2

p
.

ii. If q4qn, then μ1 ¼ ð2q�1Þðv�cÞ is the larger eigenvalue, with
eigendirection z1 ¼�1 and norm of the corresponding attracting
equilibria JwJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�1=2

p
. μ2 ¼ vþc is the smaller eigenvalue,

with eigendirection z2 ¼ 1 and norm of the corresponding saddle
equilibria JwJ ¼ 1.

iii. If q¼ qn, the system contains an infinity of half-stable non-
isolated equilibria (each direction will contain two opposite
equilibria, describing overall an ellipse of equilibria around the
origin).

Proof. For δ¼ 0, we have _z ¼�βðz2�1Þ. The situation qoqn

corresponds to β40, and q4qn corresponds to βo0. Parts i and
ii follow immediately. For q¼ qn, _z ¼ 0; all lines through the origin
are invariant, and each contains two half-stable equilibria.
In Appendix D, we show that the locus of these equilibria is an
ellipse (see dotted curve in Fig. 4), and we describe its axes and
foci. □

Remark 1. For q¼1, the attracting equilibria lay along the direc-
tion z¼�1, so that w1þw2 ¼ 0. A simple way to quantify how far
the stable equilibrium w¼ ðw1;w2Þ degrades from this error-free
state as the quality q decreases, we can measure how much the
sum SðqÞ ¼ jw1þw2j deviates from zero, the outcome of perfect
learning (Fig. 5).

In Fig. 1B, the inputs are unbiased (δ¼ 0), and in the absence
of crosstalk (q¼1) the inputs segregate completely. As crosstalk

Fig. 3. Invariant lines and generic phase plane dynamics. The invariant lines are
marked as z1ðqÞ and z2ðqÞ. The arrows indicate the rotational direction of the vector
field between the two invariant lines. This can be obtained in the right vertical half-
plane (where we have defined our angle, θA ½�π=2; π=2�), then extended by
symmetry in the opposite half-plane. For qoqn we have z14z2 (A). As q increases,
the two invariant lines rotate: clockwise if δ40 and anti-clockwise if δo0.
At q¼ qn , one of the invariant lines goes through a vertical stage. For δ40, θ2
jumps from �π=2 to π=2, hence z2 has a vertical asymptote at q¼ qn , and jumps
from z2-�1 to z2-1. For δo0, θ1 jumps from π=2 to �π=2, hence z1 has a
vertical asymptote at q¼ qn , and jumps from z1-1 to z1-�1. In consequence,
after this critical stage, for q4qn , we have z1oz2 (B) Although the rotation is
continuous, either z1 or z2 has an infinite discontinuity, due to our definition (mod
π) of the angles θ1 ;2.

Fig. 4. Transitions of the phase plane and bifurcation at q¼ qn , in the slice δ¼ 0. (A) When q4qn , the stable equilibria are the two vectors of norm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�1=2

p
(blue dots) along

the invariant line of slope z1 ¼�1; the saddle equilibria are the two eigenvectors of norm 1 (green dots) along the invariant line of slope z2 ¼ 1. As q decreases from q¼1
towards q¼ qn , the saddles remain unchanged, but the attractors gradually approach the origin (their norm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�1=2

p
decreases). (B) When q¼ qn , the system traverses a

bifurcation state, characterized by an infinite number (an entire ellipse) of neutrally stable equilibria. This critical state permits the swap of stability between the two
invariant lines. (C) When qoqn , the stable equilibria are now the two vectors of norm 1 (blue dots) along the invariant line of slope z1 ¼ 1, while the saddle equilibria
swapped to the two eigenvectors of norm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�1=2

p
(green dots) along the invariant line of slope z2 ¼�1. As q continues to decrease from q¼ qn towards q¼ 1=2, the

attractors remain unchanged, and the saddles approach the origin (collapsing into the origin in the limit of q-1=2). (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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increases, the separation between the eigenvalues at first decreases,
though the inputs remain completely segregated. However, as
crosstalk increases further, the two eigenvalues equalize at the
critical quality value qn ¼ v=ðv�cÞ. With further increases in cross-
talk, the inputs become completely unsegregated, and the eigenva-
lues now move apart. This qualitative change at qn is a bifurcation.
Note that although the qualitative behavior only changes at qn, there
is a biologically less important quantitative change: the two sym-
metric equilibrium weight vectors decrease continuously in length
as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�1=2

p
, as q decreases from q¼1 until the bifurcation at q¼ qn,

then remain of unit length for qoqn.
In the slightly biased cases δ¼�0:2 and 0.5 (Fig. 1A and C), this

overall behavior persists, although the eigenvalues always remain
distinct, and there is no true bifurcation. Thus in part A, as
crosstalk increases, the eigenvalues at first approach each other,
and the solution remains almost segregated. At the “pseudocriti-
cal”, value of q¼ ðð2vþδÞð2vþδ�2cÞ�δ2Þ=ð2vþδ�2cÞ, the eigen-
values reach their closest value (in an “avoided crossing”) and then
start to separate as crosstalk increases further; significantly
beyond this pseudocritical value, the outcome is almost unsegre-
gated (see Figs. 5 and 6). Of course, for q values very close to this
pseudocritical value, desegregation is very rapidly increasing with
increases in crosstalk (see Figs. 5 and 6), especially with very small
values of δ. Thus even with slight input bias, the overall behavior,
switching from segregation to unsegregation at a critical crosstalk
value, resembles that seen in the unbiased situation.

2.5. Conclusions: mathematical behavior of the 2D system

Corollary 2.6. For any combination of parameters, the phase-plane
of the system (1) contains no cycles. Moreover, the system has only
two (opposite) attracting equilibria, with attraction basins two open
half-planes.

Remark. The result holds more generally for an n-dimensional
system, as shown in Appendix A.1.

Since we are looking at a 2-dimensional system, this means,
according to the Poincaré–Bendixon theorem that the only attract-
ing sets can be attracting equilibria. The two attracting equilibria
of the system (by Proposition 2.3) lie along the invariant line
corresponding to the largest eigenvalue of the covariance matrix C,
hence their position (direction and distance to origin) depends on
the values of the parameters (in particular on the quality q and
bias factor δ). Fig. 6 illustrates the evolution of these points in the
phase plane for a fixed δa0, as q increases. (We used Matcont
continuation algorithms (Dhooge et al., 2003) to numerically
estimate the equilibria and draw the equilibrium curves.)

The following two paragraphs summarize the conclusions
obtained throughout the previous sections:

Biased dynamics: When the system is biased (i.e., δa0) the two
eigenvalues of the modified input covariance matrix EC are always
separated. The phase plane has two pairs of nonzero opposing

Fig. 5. SðqÞ ¼ jw1þw2j as a measure of the increasing inspecificity of the stable equilibrium, compared to its ideal state Sð1Þ ¼ 0, as q decays from q¼1. For v¼1, c¼�0:4, we
plotted S(q). (A) For δZ0: δ¼ 1 (cyan); δ¼ 0:3 (blue); δ¼ 0:1 (purple); δ¼ 0 (red). (B) For δr0: δ¼�1 (cyan); δ¼�0:3 (blue); δ¼�0:1 (purple); δ¼ 0 (red). In both panels,
all continuous curves for δa0 concur at one point, which corresponds to the fact that, for both δ40 and δo0, the stable equilibrium at q¼ qn is independent on the
magnitude of δ. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 6. Equilibria curves in the phase plane, as q changes. The blue curves represent the stable equilibrium locus, and the green curves the saddle equilibrium. (A) Plots for a
few representative positive δ values: δ¼ 0:02 (thin curves), δ¼ 0:2 (thin dotted curves) and δ¼ 0:5 (thick curves). All green saddle curves concur at one point (on the vertical
axis), and all blue stable curves also concur at a point, corresponding to the fact that the position of the two equilibria is independent on the magnitude of δ40. (B) Plots for a
few representative negative δ values: δ¼�0:02 (thin curves), δ¼�0:2 (thin dotted curves) and δ¼�0:5 (thick curves). All green saddle curves concur at one point, and all
blue stable curves also concur at a point (on the vertical axis), corresponding to the fact that the position of the two equilibria is independent on the magnitude of δo0. The
arrows along the curves indicate the direction of increasing q. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this article.)
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equilibria, each situated on one of the two distinct invariant lines
through the origin (i.e., the two eigendirections of EC). The
invariant line of slope z1 corresponding to the higher eigenvalue
μ1 of EC contains the pair of opposing attracting equilibria; the
invariant line of slope z2 corresponding to the lower eigenvalue μ2
of EC separates their two basins of attraction and also contains the
pair of opposing saddles. As the parameter q increases, the
invariant lines rotate (clockwise if δ40 and counter-clockwise if
δo0) in a continuously differentiable manner, with an angular
speed that depends on q. This rotation gets arbitrarily fast (e.g., at
its point of maximal rotational speed) as δ-0.

Unbiased dynamics: When the system is unbiased (i.e., δ¼ 0)
the two eigenvalues of the modified input covariance matrix EC
collide at the critical value of the quality parameter q¼ qn. For any
qaqn, the phase plane has two pairs of nonzero opposing
equilibria, each situated on one of the two distinct invariant lines
ð 1
71Þ through the origin. The invariant line corresponding to the
higher eigenvalue of EC contains the pair of opposing attracting
equilibria; the invariant line corresponding to the lower eigenva-
lue of EC separates their two basins of attraction and also contains
the pair of opposing saddles. As the parameter q increases, the
invariant lines remain unchanged, until they swap instantaneously
as q traverses the critical state q¼ qn (stability-swapping bifurcation).
At the bifurcation point, the phase plane has an entire ellipse of half-
stable equilibria.

Remark. The codimension 2 bifurcation that occurs at q¼ qn in the
slice δ¼ 0 can be considered a limit case of the phase–plane
transition sequence obtained when increasing q, when making
δ-0 in the biased case. The rotational speed blows up to 1 as
δ-0, and, in the δ¼ 0 slice, the rotation becomes instantaneous
via what appears to be the bifurcation's “swap” of eigendirections.
The evolution of the rotation speed with respect to q as δ-0 is
further illustrated in Fig. 7.

3. Alternative models: Euclidean normalization of weights
versus the Oja model

The Oja rule is an elegant and classical solution to the
well-known problem that unconstrained Hebbian learning is
unstable (Dayan and Abbott, 2002; Oja, 1982). It has the biologi-
cally appealing feature that it is local, although it does require that
the “normalizing” adjustment is proportional to the current
weight. We have shown that it is still useful when some crosstalk
is present, although the stable norm, and the exact direction of the
learned weight vector, changes. One can imagine various other
ways, possibly involving “homeostasis” or “synaptic scaling”
(Turrigiano et al., 1998; Turrigiano and Nelson, 2004) of promoting
stability, and some studies invoke various combinations of these

mechanisms. A less biologically plausible, nonlocal, but extremely
simple and highly effective method, which might capture features
of any more plausible scheme and which works even for nonlinear
rules, is to impose a specific norm after each weight vector update.
Here we examine how crosstalk affects such “explicit” or “brute”
normalization.

As before, Hebb's rule lies at the basis of the weight updates:
Δw¼ γyx, with y¼wTx¼ xTw.

In other words: wðnþ1Þ ¼wþγyx. As in the Oja model, we can
think of Hebbian inspecificity being formalized as a stochastic
error matrix ε, so that, at each time step:

w-wþγyεx

Taking expectation of both sides and re-naming w¼ 〈w〉 (the
long-term average of the weight vector), C¼ 〈xxT 〉 (the covariance
matrix of the input distribution) and E¼ 〈ε〉 (the average error
matrix), we obtain the iteration: w-wþγ〈εxxT 〉w¼wþγECw.

We normalize to keep JwJ ¼ 1, and make no further approx-
imations to implement this normalization biologically. We get the
new iteration function that describes the average iterative process,
with errors, becomes

f EðwÞ ¼ wþγECw
JwþγECwJ

where the “modified” covariance matrix is as before EC; unlike in
the Oja case, EC is now involved in the normalization step as well.
Notice that, since EC has positive eigenvalues, the matrix IþγEC is
nonsingular, hence f E is defined for all wARn\f0g. This direct
normalization confines the trajectories to the unit circle. It is easy
to show that the fixed points w of the system w-f EðwÞ are all
normalized eigenvectors of the matrix EC.

The Jacobian matrix of the system around a fixed point w
is (see Appendix A.2)

Df Ew ¼ ðI�wwT ÞðγAþIÞ
JwþγECwJ

ð4Þ

Then we have the following (see Appendix A.2 for proof):
Description and stable fixed points: The system has stable fixed

points iff the modified correlation matrix EC has a maximal
eigenvalue of multiplicity one. Then, a point w is a stable fixed
point of the system iff it is a unit eigenvector of EC corresponding
to the unique maximal eigenvalue of EC.

It is clear that the phase space of this system, although not
dynamically equivalent to the phase space of the corresponding
Oja model, is very similar. Disregarding the origin (which is not in
the domain of one, but is a repelling fixed point for the other), the
other fixed points have the same qualitative behavior (stability) for
both systems, if assuming γ sufficiently small. Moreover, the
stability transitions occur at the same bifurcation points (where

Fig. 7. Illustration of the evolution of the angles θ1;2 of the invariant lines with the abscissa, as q increases. In both panels, v¼1 and c¼�0:4. (A) δ¼ 0:5; (B) δ¼�0:2.
The graphs of the functions are shown in thick lines, θ1 in blue and θ2 in green. The graphs of the derivatives are plotted in thin lines, with dθ1=dq in blue and dθ2=dq in green.
On the graphs of the derivatives, we marked with a black star the points corresponding to q¼ qn , and with a bullet the points of extremum (the inflection points for θ1;2,
where the rotational speed is maximal). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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the eigenvalues of EC collide with each other), and the bifurcation
phase-planes are themselves similar.

In the case of the two-dimensional model discussed in this paper,
the eigenvalue swap occurs as before when q¼ qn ¼ v=ðv�cÞ. For
example, in the unbiased case δ¼ 0, the bifurcation phase plane at
q¼ qn again exhibits a ring attractor. Indeed, at the codimension
2 bifurcation corresponding to δ¼ 0 and q¼ qn, the iteration function
becomes: f ðwÞ ¼w=JwJ , which maps radially any w in the plane to
the unit circle, and keeps it fixed thereafter.

In Section 4 we further investigate whether the long-term evolu-
tion of w predicted by this model is comparable with the behavior in
the more realistic situation of stochastic weight updates, in discrete
time and at finite learning rate. We study both the case of an explicit
Euclidean normalization, and the case of a “subtractive” Taylor
approximation of it (see also Radulescu et al., 2009).

4. Stochastic models. Simulations and predictions

Here we briefly study the more biologically realistic situation in
which the weights update stochastically with a small finite
learning rate γ. More precisely: while assuming a fixed (average)
error matrix E throughout the process, the weight updates are
driven by individual inputs (taken in our simulations to be
normally distributed), rather than by the mean statistics in the
negligible learning rate limit. For both types of normalization
(online Oja, as described in Section 2, and Euclidean, as described
in Section 3), we study in particular whether the convergence to
eigenvector equilibria, and the transitions in dynamics between
different values of the parameter q, still occur as in the determi-
nistic model.

Our numerical simulations show, as expected, that convergence
is conserved, in the following sense: when a pair of attracting
equilibria exist for the deterministic system (i.e., EC has distinct
eigenvalues), the discrete sequence of updating ω eventually
stabilizes to small, stochastic fluctuations around one of these
two equilibria (which are, as we recall, the appropriately normal-
ized eigenvectors corresponding to the larger eigenvalue of EC).
This is illustrated in Figs. 8 and 9A and C. In Fig. 8, x is drawn out of
a biased, Gaussian distribution of inputs (shown on the left), for
which the two eigenvalues of EC are warranted to be distinct for

any value of q, in particular for the value chosen here (q¼ qn

¼ 1=1:4). In Fig. 9, the inputs are unbiased, so the same remark
applies only if qaqn. In Fig. 9A, we illustrate the case q4qn, in
which the attracting vectors are 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�1=2

p
ð 1
�1Þ; in Fig. 9C, we

illustrate the case qoqn, in which the attracting vectors are
7 ð1=

ffiffiffi
2

p
Þð11Þ. In both cases, the stochastic update settles to fluctua-

tions about either one of these vectors, depending on the initial
conditions.

Fig. 9B illustrates the unbiased case corresponding to the
codimension 2 bifurcation in the deterministic dynamics; that is,
when q¼ qn. Recall that, in the deterministic phase-plane, this
case was characterized by an ellipse of neutrally stable equilibria,
so that each initial condition would converge radially towards a
unique nonisolated equilibrium on this curve. This situation
changes in the model driven by stochastic updates. An initial
weight vector ω will quickly be attracted towards the ellipse;
however, the orbit does not fluctuate around a particular point on
the curve, but rather diffuses along the curve, eventually covering
densely the entire ellipse.

5. Discussion

We have proposed (Cox and Adams, 2009; Adams and Cox,
2002b) that a central problem for biological learning is that the
activity-dependent processes that lead to connection strength
adjustments cannot be completely synapse specific, because they
must obey the laws of physics. This truism provides a new
viewpoint: it raises the possibility that sophisticated learning,
such as presumably occurs in the neocortex, is enabled as much
by special machinery for enhancing specificity, as by special
algorithms (Adams and Cox, 2006). We have suggested (Adams,
1998; Cox and Adams, 2009) that these plasticity errors are
analogous to mutations, and that cortical circuitry might reduce
such errors, just as “proofreading” reduces DNA copying mistakes
(Kornberg and Baker, 1992). The idea of “synaptic mutation” comes
in at least two forms. First, and most simply, neural activity of a
connection might not only affect its strength, in a Hebbian manner,
but might also affect the strength of other, existing connections
(“crosstalk”). Second, synaptogenesis, perhaps initiated by spine
formation, could result in the creation of a new connection (Le Bé

Fig. 8. Behavior of stochastic weight updates for a biased input distribution δa0. (A) A discrete input sample (N¼4000) was drawn out of a Gaussian input distribution with
v¼1, c¼�0:4, δ¼ 1, and used to update the weights. (B) Depending on their initial state, the weight vector stabilizes towards small stochastic fluctuations around either one
of the attracting equilibria (the pair of appropriately normalized eigenvectors corresponding to the larger eigenvalue of EC). (C) The corresponding iterations are shown in
the case of exact normalization at each step (fewer iterations are shown in this case, since more weights, all living on the unit circle, would obstruct the clarity of the figure.)
In all three panels, the points were colored update-chronologically from red to blue. We used q¼ v=ðv�cÞ � 0:71; the corresponding equilibria for the deterministic,
continuous-time system are marked with yellow dots in both phase spaces. (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this article.)
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and Markram, 2006; Stepanyants and Chklovskii, 2005; Zito et al.,
2009). In our earliest work (Adams, 1998; Adams and Cox, 2002a),
we conflated these two ideas by postulating that synapse
strengthening (weakening) involved the formation (removal) of
new, functional, synapses; “synaptic mutation” would occur
if these new synapses are (erroneously) made or removed at
inactive (or even currently non-existent) connections. However, it
now seems more likely that new synapses are initially silent (Isaac
et al., 1995; Liao et al., 1995; Montgomery et al., 2001), and
that Hebbian LTP involves strengthening of either these silent
synapses, or of existing functional synapses, in a progressive, albeit
quantized manner (Petersen et al., 1998; O'Connor et al., 2005).
We now prefer to focus on the clean and core issue of the accuracy
of the adjustment of existing connections, with crosstalk being
analogous to the base-copying error (or mutation) rate in Eigen-
type molecular evolution models. Synaptogenesis (which might be
activity-regulated Kwon and Sabatini, 2011) is a separate, though
linked issue.

From this point of view, it seems possible that the key to
overcoming the curse of dimensionality that underlies difficult,
and apparently almost intractable, learning problems lies not just

in finding good approximations, architectures and techniques, but
also in perfecting the relevant biological plasticity apparatus.
Indeed, it seems possible that problems of survival and reproduc-
tion are so diverse that no single algorithm can solve them all,
so that no “universal” or “canonical” cortical circuit would be
expected. In these circumstances, as Rutherford once said about
physics (Birks and Segrè, 1963), neuroscience would become a
type of stamp collecting. However, if every specialized algorithm
relies on extraordinarily specific synaptic weight adjustment, then
finding machinery that allows such specificity would be tanta-
mount to discovering new neurobiological general principles,
somewhat along the lines that established the main framework
for modern biology (Darwinian evolution, Mendelian genetics,
DNA structure and function, replication mechanisms etc). We have
speculated that an important part of such machinery, at least in
the neocortex, might lie outside the synapse itself, in the form of
complex circuitry performing a proofreading operation analogous
to that procuring accuracy for polynucleotide copying (Adams and
Cox, 2002b, 2006, 2012). However, such machinery would be less
necessary if update inaccuracy merely degraded learning, rather
than preventing it. In particular even if temporarily unfavorable

Fig. 9. Differences in stochastic behavior when q is varied, in the unbiased input case δ¼ 0 (compare with Fig. 4). A discrete number of input vectors xðtÞ ¼ ðx1ðtÞ; x2ðtÞÞ are
drawn from a distribution with covariance matrix C, with v¼1, c¼�0:4 (so that the critical quality value qn ¼ 1=1:4� 0:71). The weights ω¼ ðω1ðtÞ;ω2ðtÞÞ, adjusting with a
small learning rate γ ¼ 0:1, are plotted in the ðω1 ;ω2Þ plane, with the color of the points changing chronologically from red to blue. The top panels show the behavior of the
Oja model, while the bottom panels, for corresponding parameters, show the behavior for exact normalization of weights at each step. (A) For good transmission quality
q¼ 0:854qn , ω is converging in the long term to a state of small fluctuations around either 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�1=2

p
ð1�1ÞT (marked with yellow dots), depending on the initial state.

The plot illustrates the trajectories for two initial states, each stabilizing around one of these opposite eigenvectors. (B) For critical transmission quality q¼ qn , ω converges to
fluctuations around the ellipse of neutrally attracting equilibria, but will perpetually drift around, filling the ellipse, driven by input fluctuations from the mean statistics,
without remaining asymptotically near any particular equilibrium state. (C) For poor transmission quality q¼ 0:6oqn , ω is converging in the long term to a state of small
fluctuations around 7ð1=

ffiffiffi
2

p
Þð11ÞT (marked with yellow dots), depending on the initial state. The plot illustrates the trajectories for two initial states, each stabilizing around

one of these opposite eigenvectors. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

A. Rǎdulescu, P. Adams / Journal of Theoretical Biology 337 (2013) 133–149142



(e.g., “noisy”) input statistics led to imperfect learning because of
Hebbian inspecificity, the degraded weights might still be a useful
starting point for better learning when input statistics improve. On
the other hand, if inspecificity completely prevented even partial
learning, then rapid and successful learning from newly favorable
statistics might be impossible. These considerations have impelled
us to examine the effect of Hebbian “crosstalk” in various classical
models of unsupervised learning, using both linear (Radulescu
et al., 2009) and nonlinear rules (Cox and Adams, 2009) (see also
Elliott, 2012).

5.1. Separate but equal: segregation without bias

In this paper we extended our previous study (Radulescu et al.,
2009) of the effect of crosstalk on the simple linear Hebbian model
of Oja to situations approaching the “unbiased” case where all
inputs have the same statistical distribution. This case has often
been invoked in discussions of the emergence of ocular dominance
wiring and other forms of neural development, but it might also
apply to any situation in which sets of inputs disconnect com-
pletely, or “segregate,” to form pruned wiring patterns that are
then “sculpted” by a more subtle synaptic learning process. (In the
present model weights and activities can be negative; one would
interpret negative weights as disconnections. Other updating
schemes, restricting the weights to be positive, could of course
lead to different long-term dynamics.) For the case of visual input,
it seems likely that statistics would be similar, and positively
correlated, for the two eyes, which look at the same world, and it
is well known (Dayan and Abbott, 2002) that a linear Hebb rule
with unbiased inputs, under either implicit or explicit normal-
ization, leads to the symmetric, equal-weight, and thus apparently
unbiological, outcome. A possible solution to this is to use a
“subtractive” normalization scheme, although this also requires
imposing weight limits (Miller and MacKay, 1994). It has been
shown that a wide variety of nonlinear rules (Elliott, 2003),
including the BCM rule (Bienenstock et al., 1982) and STDP
(Elliott, 2008) can lead to ocular segregation under unbiased
statistics. The key point is that segregated states can be created
by typically nonlinear, “symmetry-breaking” mechanisms even
when the inputs themselves do not favor particular segregated
outcomes.

A natural question would be: if such segregated outcomes are
an important part of normal development (which then constrain
subsequent, more detailed, “refining,” plasticity processes, includ-
ing learning), how could the determining “unbiased” statistics
arise, and conversely, how would plasticity errors, such as cross-
talk, or other alterations in the form of the rule, affect the
outcome? In particular, we show here that, unsurprisingly, cross-
talk tends to prevent segregation, especially when the inputs are
close to unbiased. This might set a limit to the use of symmetry
breaking to generate specific wiring, or require special specificity-
enhancing circuitry, such as “proofreading,” even during develop-
ment. At the very least it suggests that internally generated
patterns deriving segregation, such as negative correlations
induced by mutual inhibition, might have to be quite strong to
overcome the desegregating effect of inevitable crosstalk.

Before exploring this further, we comment briefly about
“unbias” in relation to Hebbian learning. Although here we focus
on lack of bias in the second order statistics, one can also postulate
unbias at all order, an assumption which greatly simplifies the
study of nonlinear Hebbian plasticity, essentially eliminating the
possibility of learning and restricting analysis to development.
To what would unbiased high-order statistics correspond?
It seems that they correspond to the radially symmetric distributions
recently considered by Lyu and Simoncelli (Lyu and Simoncelli,
2009), where the joint pdf equal density contour lines are nested

hyperspheres with nonGaussian spacings. One might expect that
with completely unbiased (spherical) input statistics no particular
direction in weight space would be favored and therefore the
outcomes would be either symmetric (equal weights), or broken
symmetric (various combinations of opposite but equal magnitude
weights); the particular set of outcomes would be determined by the
higher-order correlations, and could be quite complicated. Indeed,
Elliott (2003) finds that segregated outcomes are quite typical of
nonlinear Hebbian rules with unbiased statistics and shows that
crosstalk can induce bifurcations in these cases (Elliott, 2012).

Recently, it has been suggested that the Oja rule (even without
crosstalk) and Eigen's replication/mutation equation might be
“isomorphic” (Fernando and Szathmáry, 2009; Fernando et al.,
2010). Indeed both equations describe normalized growth pro-
cesses. However, our work shows that the Oja equation only shows
a bifurcation at a critical crosstalk value in very narrow conditions.
We suggest that the important analogy lies less in detailed
mathematical equivalencies, and more in the fundamental need
for accuracy in elementary biological adaptational processes. In
particular, it is clear that superaccurate polynucleotide copying
underlies Darwinian evolution, and similarly superaccurate Heb-
bian plasticity might be needed for neural learning.

5.2. Error matrix and effect of crosstalk

The analysis reported here essentially shows that the well
known bifurcation that occurs in linear Hebbian learning as
unbiased negative correlations become positive (from segregated
to unsegregated states) still occurs in the presence of crosstalk, but
at a new, crosstalk-dependent critical negative correlation level.
This effect is quite intuitive: crosstalk favors the unsegregated
state, and therefore allows the switch to occur at negative
correlation, rather than at zero correlation. Of course this situation
changes dramatically as soon as any degree of bias is introduced,
since now the eigenvalues of C become distinct, and our previous
analysis (Radulescu et al., 2009) applies: crosstalk produces a
smooth change in the direction of the learned weights (the
dominant eigenvector of EC). Our present analysis attempts to
characterize the relation between these two regimes. In particular,
we show that the smooth change can be very rapid when bias
is weak.

The change in the normalization produced by crosstalk in the
Oja model is largely irrelevant, and indeed one still sees the same
behavior with explicit normalization (Section 3). Our analysis also
gives insight into the codimension two bifurcation that occurs for
unbiased inputs at the critical quality qn, via an ellipse of half-
stable equilibria. For very small input bias, the motion “towards
the ellipse” becomes extremely rapid when approaching qn (Fig. 6
and Appendix C), which permits the exchange of stability between
the two invariant lines at this critical state (Fig. 3). Although a true
bifurcation is only seen for unbiased inputs and for negligible
learning rates, the behavior remains practically indistinguishable
from a bifurcation even with slightly biased inputs and bounded
learning rates. An example was already discussed in our previous
paper (see Fig. 4 in Radulescu et al., 2009).

A similar situation occurs with models of phase transitions: a
true bifurcation of the dynamics only occurs in the “thermody-
namic limit,” but this is effectively established even for quite small
systems (Sollich, 1994). We have previously called attention to the
analogy between Hebbian learning and molecular evolution
(Adams and Cox, 2002a; Adams, 1998), with crosstalk playing
the role of mutation. In Eigen's evolution model (Eigen, 1971), the
transition from the ordered, living, state to the disordered,
chemical, state is quite sharp even for polynucleotide lengths
� 50, though a true phase transition (identical to that of the
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surface of the 2-dimensional Ising model) is only seen with
unlimited chains (Saakian and Hu, 2006). Interestingly, the model
becomes easiest to analyze in this limit, and the relevant dimen-
sionless control parameter is simply the product of the mutation
rate and the (binary) chain length (for binary strings). Although we
analyzed here the n¼2 case, we assume that weights are specified
with unlimited bit resolution (i.e., reals). In this case the dimen-
sionless control parameter, equivalent to that in the thermody-
namic limit of the Eigen model, is q. In the standard Eigen model,
the mutation rate is the same at all chain positions.

In our earlier paper (Radulescu et al., 2009) we illustrated our
general mathematical results using the particular case of E with all
diagonal elements equal and all off-diagonal elements equal (i.e.,
we assumed that the Hebbian adjustment of any weight was
equally affected by error, and does not depend either on the
strength of that weight or its identity). Such “isotropicity” seems a
reasonable first assumption, like neglecting bumps on an inclined
plane in mechanics. However, experimentally crosstalk has been,
for technical reasons, mostly documented between anatomically
neighboring synapses (Harvey and Svoboda, 2007; Bi, 2002;
Engert and Bonhoeffer, 1997). In that paper we justified isotropi-
city based on the finding that individual cortical connections are
composed of multiple synapses which are scattered over the
dendritic tree (Radulescu et al., 2009; Varga et al., 2011; Chen
et al., 2011; Jia et al., 2010). To some extent, crosstalk locality could
be captured using different, nonisotropic, forms for E without
affecting our main conclusions. However, in the present paper we
present result only for the n¼2 input case, where the distinction
between local and global crosstalk does not arise.

5.3. Relevance to ocular dominance and general developmental
mechanisms

A useful though rather fuzzy distinction can be drawn between
developmental mechanisms which generate sets of connections
(“circuits”), or, perhaps, “incipient” or “potential” connections
(Adams and Cox, 2002b; Stepanyants and Chklovskii, 2005) that
can be made actual without axo-dendritic rewiring merely by
adding postsynaptic spines or presynaptic “drumsticks” (Anderson
and Martin, 2001; Sherman and Guillery, 2001), and “learning,”
which refines (perhaps in crucial ways) the overall framework
established by development. This distinction is related to that
between “Nature” and “Nurture,” or, in the context of Chomskyan
linguisitics, “principles” and “parameters.” The Oja model encap-
sulates this distinction in minimal form: by definition, when the
inputs are unbiased there can be no learning about the external
world, and only two outcomes are possible, which we call
segregated or unsegregated. The classic biological example is that
in many species early in development a geniculate axon diffusely
innervates a patch of layer IV of cortex (though it does not
necessarily contact all the neurons whose dendrites ramify in that
patch), but then retracts from stripes within that patch that
become selectively innervated by axons carrying signals from the
other eye. Cells within a stripe then become largely monocular,
although they develop different selectivities for different stimulus
features such as orientation. In the Oja model, segregation appears
in response to unbiased (or, effectively, nearly unbiased) inputs at
a critical level of negative correlation, which depends on the
degree of crosstalk. In real animals, segregation appears before
the onset of visual experience, and is thought to be driven by
unbiased inputs generated by spontaneous firing. While one might
expect crosstalk to hinder segregation (since it tends to equalize
weights), our results show this is not quite correct in the Oja
model: it merely shifts the critical degree of (unbiased) correlation
required. Various proposals exist for how such inputs can induce

segregation even when correlations are positive (Miller and
MacKay, 1994; Elliott, 2003) and it's likely that crosstalk will also
have the same weak effect here. Indeed, Elliott (2012) has shown
that while crosstalk can induce a bifurcation from segregation to
unsegregation in a weight-dependent model, the critical crosstalk
value (his equation (3.8)) can be shifted by changing correlation.
Thus, the endogenous developmental machinery that creates
circuits probably does not require great Hebbian accuracy (and
might not require Hebbian machinery at all Crowley and Katz,
2000; Paik and Ringach, 2011). If the aforementioned postulated
layer VI proofreading circuit (Adams and Cox, 2006, 2012) under-
lies accuracy, it would not be needed until learning begins,
consistent with evidence that the final stages of layer VI circuitry
(for example, feedback to relay cells) is late to develop. Indeed,
much of the initial pruning that takes place in development might
serve to improve the accuracy of proofreading circuitry essential
for true learning.

Once detailed, and biased, sensory input occurs, it can drive
quantitative adjustments in the already correctly segregated
circuits, involving both synapse-strength change and stabilization
and un-silencing of new spines (and removal of weak synapses).
However, even in the highly simplified Oja model, appropriate
adjustment now requires great accuracy, and therefore presum-
ably “proofreading,” especially when correlation bias is weak.

6. Conclusion

The inspecific Oja rule does not generically show bifurcations
with variation in the crosstalk parameter. In this paper we analyze
an interesting special case which does show a bifurcation: when
the input statistics are unbiased. We also describe the behavior in
the vicinity of this special case, which is practically indistinguish-
able from a bifurcation. Essentially in this region “learning”
changes rather abruptly from being dominated by second-order
input statistics (at sufficiently low crosstalk) to being dominated
by the internal pattern of crosstalk itself. However, we regard this
behavior as being biologically rather uninteresting, since synaptic
mechanisms are usually accurate enough that it never occurs. The
one exception would be during development, where near-
unbiased statistics might be used by the brain to induce initial
selective wiring. Our results suggest that even in this case, high
Hebbian accuracy might be required. However, extreme accuracy
is probably most essential for nonlinear learning from higher-
order statistics (Cox and Adams, 2009; Elliott, 2012). We suggest
that the unsupervised learning “environment” should be con-
strued as the complete set of input correlations to the plastic
neuron or network. In evolution models, the fitness of each
possible sequence must be specified (and could be unique for
each sequence). Input correlations, at all orders, would similarly
define growth rates for every possible weight vector. However, in
both cases, update errors would set sharp limits to the acquisition
of information by adaptation. Perhaps the necessary extraordinary
accuracy is achieved in analogous ways in both biological and
neural adaptation.

Appendix A. Stability of equilibria

A.1. Stability of equilibria for the inspecific Oja rule

Consider the inspecific Oja system dw=dt ¼ f EðwÞ, with f EðwÞ ¼
γ½ECw�ðwTCwÞw�. Then:

Lemma A1. The Jacobian of the system around an equilibrium w is:

Df Ew ¼ γ½EC�2wðCwÞT�ðwTCwÞI� ð5Þ
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Proof. Call gðwÞ ¼ ðwTCwÞw , so f EðwÞ ¼ γ½ECw�gðwÞ�
giðwÞ ¼ ðwTCwÞwi

If ia j:

∂gi
∂wj

ðwÞ ¼ ∂
∂wj

∑
k;l
Cklwkwl

 !
wi ¼ 2 ∑

k
Ckjwk

 !
wi ¼ 2½Cw�jwi

If i¼ j:

∂gi
∂wi

ðwÞ ¼ ∂
∂wi

∑
k;l
Cklwkwl

 !
wiþ∑

k;l
Cklwkwl ¼ 2 ∑

k
Ckiwk

 !
wi

þwTCw¼ 2½Cw�iwiþwTCw

So:

Dgw ¼ 2wðCwÞT þðwTCwÞI □

Proposition A1. Suppose EC has a multiplicity one largest eigenva-
lue. An equilibrium w is a local hyperbolic attractor for the system iff
it is an eigenvector corresponding to the maximal eigenvalue of EC.

Proof. Recall that a vector w is an equilibrium for the system if
either w¼ 0 or if w is an eigenvector of EC with eigenvalue λw ,
normalized so that JwJC ¼ λw . Clearly, Df

E
w ¼ 0 ¼ γEC, which has at

least one eigenvalue40; hence w¼ 0 is unstable.
Fix now an eigenvector wa0 of EC, with ECw¼ λww. Then:

Df Eww¼ γ½ECw�2wðCwÞTw�ðwTCwÞw� ð6Þ

Df Eww¼ γ½�2wwTCw� ¼ �2γλww ð7Þ
Recall that the vector w can be completed to a basis B of
eigenvectors, orthogonal with respect to the dot product 〈�; �〉C.
Let vAB, vaw, be any other arbitrary vector in this basis, so that
ECv¼ λvv, and 〈w; v〉C ¼wTCv¼ 0. We calculate:

Df Ewv¼ γ½ECv�2wwTCv�λwv� ð8Þ

Df Ewv¼ γ½ðλv�λwÞv�2〈w; v〉Cw� ¼ �γ½λw�λv�v ð9Þ
So B is also a basis of eigenvectors for Df Ew . The corresponding
eigenvalues are �2γλw (for the eigenvector w) and �γ½λw�λv� (for
any other eigenvector vAB, vaw). An equivalent condition for w
to be a hyperbolic attractor for the system is that all the
eigenvalues of Df Ew are o0. Since the learning rate γ and the
eigenvalue λw are both 40, this condition is further equivalent to
having �γðλw�λvÞjo0, for all vAB, vaw. In conclusion, an
equilibrium w is a hyperbolic attractor if and only if λw4λv , for
all vaw (i.e. λw is the maximal eigenvalue, or in other words if w
is in the direction of the principal eigenvector of EC). □

A.2. Stability of equilibria for the exact normalization rule

Consider the direct normalization system Δw¼ f EðwÞ, with
f EðwÞ ¼ γ½ECw�ðwTCwÞw�. Then:

Lemma A2. The Jacobian of the system around a fixed point w is:

Df Ew ¼ ðI�wwT ÞðγAþIÞ
JwþγECwJ

ð10Þ

Proof. In order to slightly simplify the notation, we call A¼ EC,
u¼wþγECw and a¼ JuJ , notation which we will use whenever
it is convenient. The vector w is a fixed point of f ðwÞ iff
wþγAw¼ aw, i.e. w is a unit eigenvector of A (with the Euclidean
norm). To establish the stability, we compute the Jacobian matrix
of f E at each fixed point.

Fix jA1;n. Then, for any ia j:

∂ui

∂wj
¼ ∂
∂wj

ðwiþγ½Aw�iÞ ¼ γAij

When i¼ j, we have similarly:

∂uj

∂wj
¼ ∂
∂wj

ðwjþγ½Aw�jÞ ¼ 1þγAjj

Hence, overall:

∂
∂wj

‖u‖2 ¼ 2ujð1þγAjjÞþ ∑
ia j

2uiγAij ¼ 2ujþ2γ∑
i
uiAij ¼ 2ujþ2γ½ATu�j

ð11Þ
In matrix form:

∂
∂w

‖u‖2 ¼ 2γATuþ2u ð12Þ

Now, fix iA1;n. For ja i, we have:

∂f Ei
∂wj

¼ γAij JuJ�ui‖u‖�1½γATuþu�j
‖u‖2

For j¼ i, we have:

∂f Ei
∂wi

¼ ð1þγAiiÞJuJ�ui‖u‖�1½γATuþu�i
‖u‖2

Rewritten in matrix form:

∂f E

∂w
¼ γ
a
A� 1

a3
ðγuuTAþuuT Þþ1

a
I¼ 1

a
I� 1

a2
uuT

� �
ðγAþIÞ ð13Þ

where I is the appropriate size identity matrix.
At any fixed point w, for which automatically JwJ ¼ 1 and

Aw¼ λww, where 1þλwγ ¼ a, we have that:

uuT ¼ ðwþγAwÞðwþγAwÞT ¼ ð1þ2γλwþγ2λ2wÞwwT

¼ ð1þλwγÞ2wwT ð14Þ

The Jacobian at a fixed point w can be then simplified to:

∂f E

∂w
¼ 1

a
ðI�wwT ÞðγAþIÞ □ ð15Þ

Proposition A2. Suppose EC has a multiplicity one largest eigenva-
lue. A fixed point w (i.e., a unit eigenvector of EC) is attracting iff it is
an eigenvector corresponding to the maximal eigenvalue of EC.

Proof. We calculate:

∂f E

∂w
ðwÞ ¼ 1

a
ðI�wwT Þðγλwþ1Þw

¼ 1
a
ðw�wðwTwÞÞðγλwþ1Þ ¼ 0 ð16Þ

Complete w to a basis of eigenvectors of A (not necessarily
mutually orthogonal). Let vaw any of the vectors in this basis
(with eigenvalue λv), and consider z¼ v�½wTv�w the projection of
v on the orthogonal complement of w. Then:

ðγAþIÞðzÞ ¼ ðγλvþ1Þv�ðγλwþ1Þ½wTv�w ð17Þ
Hence

∂f E

∂w
ðzÞ ¼ 1

a
ðγλvþ1Þðv�½wTv�wÞ

¼ 1
a
ðγλvþ1Þz¼ γλvþ1

γλwþ1
z ð18Þ

A normalized eigenvector w of EC is stable as a fixed point of the
system if all the eigenvalues of the Jacobian ∂f E=∂w at w are less
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than one in absolute value:

γλvþ1
γλwþ1

����
����o1

Since all eigenvalues of EC are positive (recall that EC is diagona-
lizable with the dot product 〈�; �〉C), this is equivalent to ðγλvþ1Þ=
ðγλwþ1Þo1, and thus to λw4λv for every vaw. □

Appendix B. An extension to higher dimensions

Theorem B1. Suppose the modified covariance matrix EC has a
unique maximal eigenvalue λ1. Then the two eigenvectors 7wEC

corresponding to λ1, normalized such that ‖w‖C ¼ λ1, are the only
two attractors of the system. More precisely, the phase space is
divided into two basins of attraction, of wEC and �wEC respectively,
separated by the subspace 〈w;wEC〉¼ 0.

Proof. We perform the change of variable u¼
ffiffiffi
C

p
w, so that uTu¼

wTCu. Notice that
ffiffiffi
C

p
is also a symmetric matrix, and that w¼ffiffiffi

C
p �1

u; the system then becomes:ffiffiffi
C

p �1
_u ¼ EC

ffiffiffi
C

p �1
u�ðuT

ffiffiffi
C

p �1
C
ffiffiffi
C

p �1
uÞ

ffiffiffi
C

p �1
u¼ E

ffiffiffi
C

p
u�ðuTuÞ

ffiffiffi
C

p �1
u

or equivalently:

_u ¼
ffiffiffi
C

p
E
ffiffiffi
C

p
u�ðuTuÞu¼Au�ðuTuÞu ð19Þ

where, of course, we defined A¼
ffiffiffi
C

p
E
ffiffiffi
C

p
. Clearly, A a symmetric

matrix, having the same eigenvalues as EC. More precisely, w is an
eigenvector of EC with eigenvalue μ iff

ffiffiffi
C

p
v is an eigenvector of A

with eigenvalue μ. Moreover: any two distinct eigenvectors vaw
of EC are known to be orthogonal, hence any two distinct
eigenvectors of A are orthogonal in the regular Euclidean dot
product: ð

ffiffiffi
C

p
vÞT ð

ffiffiffi
C

p
wÞ ¼ vT

ffiffiffi
C

p ffiffiffi
C

p
w¼ vTCw¼ 0.

Consider then v to be the principal component of A (i.e., the
eigenvector corresponding to its maximal eigenvalue), and let
u¼ uðtÞ be a trajectory of the system (19). We want to observe
the evolution in time of the angle between the variable vector u
and the fixed vector v.

cos θ¼ 〈v;u〉
JvJ � j uJ

We differentiate and obtain:

�JvJ sin ðθÞ _θ ¼ 1
‖u‖2

〈v; _u〉 � JuJ�〈v;u〉
〈u; _u〉
JuJ

� �

¼ ðvT _uÞ‖u‖2�ðvTuÞðuTuÞ
‖u‖3

ð20Þ

The numerator of this expression

hðuÞ ¼ ðvT _uÞðuTuÞ�ðvTuÞðuT _uÞ
¼ ðuTuÞðvT ½Au�ðuTuÞu�ÞþðuTvÞ�ðvTuÞðuT�½Au�ðuTuÞu�Þ
¼ ðuTuÞðvTAuÞ�ðvTuÞðuTAuÞ

We are interested in the sign of hðuÞ; to make our computations
simpler, we can diagonalize A in a basis of orthogonal eigenvectors
A¼ PTDP, where D is the diagonal matrix of eigenvalues and P is
an orthogonal matrix whose columns are the eigenvectors. Then:

hðuÞ ¼ ½ðPuT ÞðPuÞ�½ðPvT ÞDðPuÞ��½ðPvT ÞðPuÞ�½ðPuT ÞDðPuÞ�
¼ ðzTzÞðyTDzÞ�ðyTzÞðzTDzÞ

where y¼ Pv and z¼ Pu, so that Dy¼DPv¼ λ1y (where λ14λ2
Z…Zλn is the largest eigenvalue of EC, assumed to have multi-
plicity one. Hence:

hðuÞ ¼ ðzTzÞðyTDzÞ�ðyTzÞðzTDzÞ

¼ ðzTzÞλ1ðyTzÞ�ðyTzÞðzTDzÞ
¼ ðyTzÞ½λ1ðyTzÞ�zTDz�
¼ ðyTzÞ λ1∑z2j �∑λjz2j

h i
¼ ðyTzÞ ∑ðλ1�λjÞz2j

h i

Hence, if yTz40, then hðuÞ40. In other words: if vTu40 then
�JvJ sin ðθÞ _θ40, hence that _θo0. For our original system, this
means that any trajectory starting at a w with 〈w;wEC〉40
converges in time towards the principal eigenvector wEC of the
matrix EC. □

Appendix C. Sensitivity analysis

This is a technical section, in which we calculate how the
invariant directions z1;2 change when varying q.

Remark. In order to simplify further computations, we rewrite

z1;2 ¼
�qδ7

ffiffiffiffi
Δ

p

2β
¼�qδ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2δ2þ4β2þ4βδð1�qÞ

q
2β

¼�1
2

qδ
β

� �
7

1
2
signðβÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qδ
β

� �2

þ4½βþð1�qÞδ�
β

s

Call γ ¼ qδ=β¼ qδ=ðcqþð1�qÞvÞ. Then ð1�qÞδ=β¼ ðδ�cγÞ=v, and
hence

z1;2 ¼�1
2
γ7

1
2
signðβÞ ffiffiffi

η
p

where

η¼ Δ

β2 ¼ γ2þ4 1þδ�cγ
v

� �

Then we can use the chain rule to express dz1;2=dq¼ ðdz1;2=dγÞ�
ðdγ=dqÞ.

Lemma. The derivative dγ=dq¼ δv=β2. Also, for qAð1=2; qnÞ [
ðqn;1� (i.e., where βa0), we have

dz1;2
dγ

¼ 1
2

7 qδ�2cβ
v

� �
ffiffiffiffi
Δ

p �1

2
664

3
775o0

Proof.
dγ
dq

¼ d
dq

qδ
β

� �
¼ δ½β�q _β �

β2 ¼ δ½β�qðc�vÞ�
β2 ¼ δv

β2

For qA ð1=2; qnÞ [ ðqn;1�, we also have directly that

dz1;2
dγ

¼ ¼�1
2
7

1
2

signðβÞdη
dγffiffiffi

η
p ¼�1

2
7

1
2
signðβÞ

γ�2c
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2þ4 1þδ�cγ
v

� �s

ð21Þ

dz1;2
dγ

¼ 1
2

7
β γ�2cβ

v

� �
ffiffiffiffi
Δ

p
=jβj

�1

2
664

3
775¼ 1

2

7 qδ�2cβ
v

� �
ffiffiffiffi
Δ

p �1

2
664

3
775 ð22Þ

Since

γ2þ4 1þδ�cγ
v

� �� �
� γ�2c

v

� �2

¼ 4½vðvþδÞ�c2�
v2

40;

it follows that
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2þ4 1þδ�cγ

v

� �s
4 jγ�2c

v
jZ7 γ�2c

v

� �

and hence

jsignðβÞ γ�2c
v

� �
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2þ4 1þδ�cγ
v

� �s o1

It immediately follows from (2) that dz1;2=dγo0. □

Corollary. The slope of the invariant lines changes with respect to q
according to

dz1;2
dq

¼ δv

2β2

7 qδ�2cβ
v

� �
ffiffiffiffi
Δ

p �1

2
664

3
775

hence signðdz1;2=dqÞ ¼�signðδÞ for qAð1=2; qnÞ [ ðqn;1�.

Proof. The conclusion follows directly from the chain rule that
dz1;2=dq¼ ðδv=β2Þ � ðdz1;2=dγÞ. □

At this stage, we can distinguish two cases: δo0 and δ40. We
analyze in detail the case δ40. The other is very similar (although
not symmetric about δ¼ 0), and we will only state the results, and
show some graphic illustrations.

Proposition C1. If δ40, then dz1;2=dqo0; hence both z1;2 are
decreasing as qA ð1=2; qnÞ [ ðqn;1�. Furthermore, the monotonicity,
asymptotes and end behavior of the functions z1;2ðqÞ are sketched in
the following table:

Remark C1. In the system's phase plane, this corresponds to a
continuous clockwise rotation of the two invariant lines (the
vertical asymptote at qn corresponds to the z2 line going through
a the vertical position). A phase–plane sketch of this process is
shown in Fig. 2, and the graphs of the actual functions z1;2ðqÞ and
of their derivatives dz1;2=dq, for some fixed values of the para-
meters v; c; δ40, are shown in Fig. A1.

Remark C2. Clearly from the table, it is shown that the angular
position of the two equilibria at q¼ qn does not depend on the bias
δ. It can be easily shown that the norm of these points is also

independent on δ. For example, the norm of the stable equilibrium
is

‖w‖2 ¼ μ1ðz21þ1Þ
vz21þ2cz1þðvþδÞ ¼

ð1�qnÞcþqnðvþδÞ
vð1�qnÞ2þ2cqnð1�qnÞþðvþδÞqn2

� qn2 ðz21þ1Þ

ð23Þ

‖w‖2 ¼ ð1�qnÞcþqnðvþδÞ
qn½ð1�qnÞcþqnðvþδÞ� � q

n2 ðz21þ1Þ ¼ 1�2qnþ2qn2

qn
ð24Þ

Hence the position of the two equilibria at critical quality is the
same for all bias values δ40.

Proof. The monotonicity follows from the Corollary. The limit
values follow from direct computation. For example:

lim
q-qn

þ
z2 ¼ lim

q-qn
þ

�qδ�
ffiffiffiffi
Δ

p

2β
¼ lim

q-qn
þ

�qnδ
0� ¼ þ1

lim
q-qn�

z2 ¼ lim
q-qn�

�qnδ
0þ ¼�1

lim
q-qn

z1 ¼ lim
q-qn

�qδþ
ffiffiffiffi
Δ

p

2β
� �qδ�

ffiffiffiffi
Δ

p

�qδ�
ffiffiffiffi
Δ

p ¼ lim
q-qn

βþð1�qÞδ
qδþ

ffiffiffiffi
Δ

p ¼ 1�qn

qn
□

Remark C3. If δo0, then dz1;2=dq40 and hence both z1 and z2
are increasing as qA ð1=2; qnÞ [ ðqn;1�. In the system's phase plane,
this corresponds to a continuous counter-clockwise rotation of the
two invariant lines.

Proposition C2. For δ40, the angle θ1;2A ½�π=2;π=2� between
each invariant line and the w1 abscissa is decreasing with respect
to the parameter q. Moreover, the angular rate of change is finite, at
all qAð1=2;1�.

Proof. The relation between the slope z and the actual angle θ is
given by: z¼ tanθ (we will avoid indices wherever there is no
danger of confusion). Hence, for qAð1=2; qnÞ [ ðqn;1�, we have

cos 2ðθÞ � dθ
dγ

⟹
dθ
dγ

¼ dz
dγ

� dz
dγ

� 1
z2þ1

:

Fig. A1. Slopes of invariant lines (A) and their change as q is varied (B). In both panels, the other parameters values were fixed to v¼1, c¼�0:4 and δ¼ 0:2. Notice that, in
accordance with Proposition C.1, z1 and its derivative dz1=dq are continuous (blue curves) on ½1=2;1�, while z2 and its derivative dz2=dq (green curves) have vertical
asymptotes at q¼ qn ¼ v=ðv�cÞ � 0:71. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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So

dθ
dq

¼ dγ
dq

� dθ
dγ

¼ δv

2β2 �
dz
dγ

� 1
z2þ1

ð25Þ

hence sign dθ=dq
� 	¼�signðδÞ, for all qA ð1=2; qnÞ [ ðqn;1�.

We yet have to check that the rate of change dγ=dq remains
finite (i.e., does not blow up to �1) as q-qn. Elaborating on (25)
we have, for qA ð1=2; qnÞ [ ðqn;1�:

lim
q-qn

dθ2

dq
¼ lim

q-qn

δv

2β2 �
� qδ�2cβ

v

� �
�

ffiffiffiffi
Δ

p

ffiffiffiffi
Δ

p � 4β2

Δþ4β2�2qδ
ffiffiffiffi
Δ

p

¼ 2δv
qnδ

� �qnδ�qnδ

2qn2δ2þ2qn2δn2
¼� v

qn2δ
ð26Þ

We also notice that

lim
q-qn

z1 ¼
1�qn

qn
⟹ lim

q-qn
ðz21þ1Þ ¼ 1�2qnþ2qn2

qn2
ð27Þ

and that

lim
q-qn

dz1
dq

¼ lim
q-qn

δv

2β2 �
qδ�2cβ

v

� �
�

ffiffiffiffi
Δ

p

ffiffiffiffi
Δ

p ¼ lim
q-qn

δv

2β2 �
qδ�2cβ

v

� �
�

ffiffiffiffi
Δ

p

ffiffiffiffi
Δ

p

�
qδ�2cβ

v

� �
þ

ffiffiffiffi
Δ

p

qδ�2cβ
v

� �
þ

ffiffiffiffi
Δ

p

¼ lim
q-qn

δv

2β2 ffiffiffiffi
Δ

p �
qδ�2cβ

v

� �2

�Δ

qδ�2cβ
v

� �
þ

ffiffiffiffi
Δ

p

¼ lim
q-qn

δv

2β2 ffiffiffiffi
Δ

p �
�4β2

v2
ðc2�v2�vδÞ

qδ�2cβ
v

� �
þ

ffiffiffiffi
Δ

p

¼ lim
q-qn

δv

2β2 ffiffiffiffi
Δ

p � �4β2 detðCÞ
v2

� 1

qδ�2cβ
v

� �
þ

ffiffiffiffi
Δ

p

¼ δv

2β2qnδ
� �4β2 detðCÞ

v2
� 1
2qnδ

¼�detðCÞ
vδqn2

ð28Þ

Combining (26) and (28), we have

lim
q-qn

dθ2

dq
¼ dz1

dq
1

z21þ1
¼�detðCÞ

vδqn2
� qn2

1�2qnþ2qn2
¼ �detðCÞ
vδð1�2qnþ2qn2 Þ □

ð29Þ

Appendix D. Description of the ellipse attractor

For unbiased inputs δ¼ 0 and critical quality q¼ qn, EC has a
double eigenvalue μ¼ vþc¼ ð2qn�1Þðv�cÞ. The eigenspace of EC
is R2, hence each direction (i.e. slope z¼ tan θA ½�1; þ1�)
produces two equilibria, normalized as follows:

‖w‖2 ¼ μðz2þ1Þ
vz2þ2czþv

¼ ðvþcÞ½ tan 2θþ1�
v tan 2θþ2c tan θþv

¼ vþc

v sin 2θþ2c sin θ cos θþv cos 2 θ

¼ vþc
vþc sin ð2θÞ ð30Þ

We show that this is the polar equation of an ellipse with foci
along the first diagonal θ¼ π=4. Indeed, under a clockwise rotation

by �π=4, Eq. (30) becomes

ρ2 ¼ vþc

vþc sin 2 θ�π
4

h i
 �¼ vþc
vþc cos ð2θÞ

¼ ¼ vþc

v½ cos 2 θþ sin 2 θ�þc½ cos 2 θ� sin 2 θ�

¼ vþc

ðvþcÞ cos 2 θþðv�cÞ sin 2 θ

¼ ¼ vþcffiffiffiffiffiffiffiffiffiffiffiffiffi
v2�c2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2�c2

p

ðvþcÞ cos 2 θþðv�cÞ sin 2 θ
ð31Þ

In polar coordinates, this is the equation of an ellipse

ρ2 ¼ a2b2

a2 cos 2 θþb2 sin 2 θ

with radial coordinate ρ¼ ‖w‖ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2�c2

p
=ðvþcÞÞ and angular coor-

dinate θ, semi-major radius a¼ ffiffiffiffiffiffiffiffiffiffi
vþc

p
and semi-minor radius

b¼ ffiffiffiffiffiffiffiffiffi
v�c

p
.
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