Dimeric procyanidin B2 inhibits constitutively active NF-κB in Hodgkin’s lymphoma cells independently of the presence of IκB mutations

Gerardo G. Mackenzie a,b, Ana M. Adamo c, Noah P. Decker a, Patricia I. Oteiza a,b,c,*

a Department of Nutrition, University of California, Davis, CA 95616, USA
b Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
c Department of Biological Chemistry, IQUIFIB (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956, C1113AAD Buenos Aires, Argentina

ABSTRACT

Due to long-term toxicity of current Hodgkin’s lymphoma (HL) treatment, the present challenge is to find new therapies that specifically target deregulated signaling cascades, including NF-κB, which are involved in Hodgkin (H) and Reed-Sternberg (RS) cell proliferation and resistance to apoptosis. We previously presented evidence that dimeric procyanidin B2 (B2) can interact with NF-κB proteins inhibiting the binding of NF-κB to DNA. Herein, we investigated if B2, acting at a late event in NF-κB signaling cascade, could be effective in inhibiting NF-κB in H–RS cells with different mechanisms of constitutive NF-κB activation. B2 caused a concentration-dependent inhibition of NF-κB-DNA binding to a similar extent (41–48% inhibition at 25 μM B2) in all the tested H–RS cell lines (L-428, KM-H2, L-540, L-1236 and HDML-2). This was associated with the inhibition of NF-κB-driven gene expression, including cytokines (IL-6, TNFα and RANTES) and anti-apoptotic proteins (Bcl-xL, Bcl-2, XIAP and cFLIP). The finding of similar amounts of RelA and p50 proteins in the nucleus, but decreased NF-κB-DNA binding, even in those H–RS cells characterized by mutations in the inhibitory IκB proteins, supports that B2 acts by preventing the binding of NF-κB to DNA. B2 did not inhibit AP-1 and STAT3 constitutive activation in H–RS cells indicating that the moderate effects of B2 on cell viability are due to the complex signaling aberrations in HL. Thus, several signaling pathways should be targeted when designing therapeutics for HL. In this regard, the capacity of B2 to inhibit NF-κB could be valuable in a multi-drug approach.

© 2008 Elsevier Inc. All rights reserved.

* Corresponding author at: Department of Nutrition, University of California, Davis One Shields Avenue, Davis, CA 95616, USA.
Tel.: +1 530 754 6074; fax: +1 530 752 8966.
E-mail address: poteiza@ucdavis.edu (P.I. Oteiza).

Abbreviations: DCDHF, 5(or 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate; DCF, 2′,7′-dichlorofluorescein; DTT, dithiothreitol; EBV, Epstein-Barr virus; EDTA, ethylenediamine tetraacetate; EMSA, electrophoretic mobility shift assay; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HL, Hodgkin’s lymphoma; H–RS cells, Hodgkin and Reed-Sternberg cells; IKK, IκB kinase; IL-6, interleukin-6; LMP-1, latent membrane protein-1; NF-κB, nuclear factor-κB; PBS, phosphate-buffered saline; RANTES, Regulated on Activation Normal T cell Expressed and Secreted; TNFα, tumor necrosis factor alpha.
0006-2952/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.bcp.2007.12.013
1. Introduction

Treatment of Hodgkin’s lymphoma (HL) in the last decades with chemotherapy and a multi-drug approach has been successful. However, 20–30 years after the treatment, its toxicity becomes evident as secondary malignancies and cardiovascular disease (reviewed in [1]). Therefore, the current challenge in HL treatment is to find new therapies that specifically target deregulated signaling cascades that cause H–RS cell proliferation and resistance of apoptosis. HL is morphologically characterized by the presence of Hodgkin (H) and Reed-Sternberg (RS) cells that generally constitute less than 1% of the total tumor cell mass. The malignant H–RS cells are surrounded by a stromal background of hyperplastic cells, including reactive non-neoplastic lymphocytes, histiocytes, plasma cells, eosinophils and stromal cells. These reactive cells are attracted by an array of cytokines and chemokines produced in large amounts by H–RS cells [2–4]. Several of these cytokines and chemokines are regulated by transcription factor NF-κB. In fact, H–RS cells are characterized by a constitutive activation of NF-κB that could explain the transformation of germinal B cells into H–RS cells and also elucidate the clinical and pathological characteristics of HL [5]. In this regard, NF-κB pathway emerges as one key signaling cascade to be targeted in the treatment of HL.

NF-κB is formed by homo and heterodimers of the Rel/NF-κB family of proteins. It is sequestered in the cytosol in an inactive form by the interaction with members of the inhibitory IκB proteins [6]. For activation of the classical pathway, two conserved serines in IκB are phosphorylated by specific IκB kinases (IKK), which target IκB for ubiquitination and degradation by the proteasome [7]. Degradation of IκB unmasks the nuclear localization signal allowing the nuclear translocation of NF-κB, binding to its consensus sequence and the transactivation of NF-κB-dependent genes [8]. Given its capacity to modulate the expression of genes involved in inflammation, cell proliferation and survival, together with the finding of its constitutive activation in many different cancer types, suggest that NF-κB has an active role in carcinogenesis [9,10]. Indeed, the activation of NF-κB has been described in solid tumors (breast, gastric and colonic cancers) as well as in leukemia and lymphoma (reviewed in [11]), including HL [12,13].

Procyanidins are oligomers of flavan-3-ol subunits present in large amount in certain edible plants and plant-derived foods (cocoa, grapes, cranberries, apples, red wine). Dimeric procyanidin B2 is composed of 2 molecules of the flavan-3-ol (−)-epicatechin linked by a 4β → 8 bonds (Fig. 1). B2 can inhibit transcription factor NF-κB at different levels in this signaling pathway. However, the most important characteristic is that B2 exerts a selective inhibition of NF-κB in the nucleus by preventing the binding of the active NF-κB to DNA [14]. The molecular modeling of the minimum energy conformer of B2 resulted in a folded structure where the hydroxyl groups of rings B’ and A orient in the same direction [14]. We showed that these hydroxyl groups could establish hydrogen bonds with the NF-κB proteins RelA and p50, thus inhibiting the binding of NF-κB to DNA κB sites.

Given the capacity of B2 to inhibit a late event in the NF-κB signaling cascade [14], we hypothesize that B2 could be effective in the inhibition of NF-κB in H–RS cells, even when constitutive NF-κB activation is secondary to mutations in the inhibitory IκB proteins [15–18]. For this purpose, we investigated the capacity of B2 to inhibit NF-κB in H–RS cell lines with different underlying causes of constitutive activation. Furthermore, the potential modulation of B2 on constitutive AP-1 and STAT3 activation was assessed. Based on extensive experimental evidence supporting their correspondence to HL malignant cells [1], H–RS cell lines were used as the experimental model. Our data indicate that B2 can inhibit constitutive NF-κB activation in H–RS cells by preventing the binding of NF-κB to its consensus sequence. In addition, the capacity of B2 to inhibit NF-κB-regulated anti-apoptotic proteins could be of potential use to decrease the resistance of H–RS cells to undergo apoptosis and therefore make them more susceptible to the action of other chemotherapeutic agents.

2. Materials and methods

2.1. Materials

Procyanidin B2 [(epicatechin-(4β → 8)-epicatechin)] was obtained from ExtraSynthese (Genay, France). The H–RS cells (KM–H2, L–428, L–540, L–1236 and HDLM–2) were obtained from the German Collection of Microorganisms and Cell Cultures (Braunschweig, Germany), while Jurkat (T cell leukemia, human) and Daudi (B lymphoblast originated from Burkitt’s lymphoma, human) cells were obtained from the American Type Culture Collection (Rockville, MA). Cell culture media and reagents were obtained from Invitrogen Life Technologies (Carlsbad, CA). The oligonucleotides containing the consensus sequence for NF-κB, AP-1 and OCT-1 as well as the reagents for the electrophoretic mobility shift assay (EMSA) were obtained from Promega (Madison, WI). Tumor necrosis factor (TNFα) ELISA kit was obtained from BD Biosciences (San Diego, CA). Regulated on Activation Normal T cell Expresssed and Secreted (RANTES) ELISA kit was obtained from BioSource (Camarillo, CA). The protease inhibitor cocktail and the interleukin-6 (IL-6) ELISA kit were obtained from Roche Applied Science (Man-
nheim, Germany). The antibodies for cFLIP, Bcl-xL, IκBα, RelA, p50 and β-tubulin, and the oligonucleotide containing the consensus sequence for STAT3 were obtained from Santa Cruz Biotechnology (Santa Cruz, CA). Bcl-2, XIAP, phosho-STAT3 (tyr 705), STAT3 and phosho-IκBα (ser 32) antibodies were obtained from Cell Signaling Technology (Beverly, MA). PVDF membranes were obtained from BIO-RAD (Hercules, CA) and Chroma Spin-10 columns were obtained from Clontech (Palo Alto, CA). The ECL Western blotting system was from GE Healthcare (formerly Amersham Pharmacia Biotech. Inc.) (Piscataway, NJ). Propidium iodide and 5(or 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate (DCDHF) were obtained from Molecular Probes (Eugene, OR). All other reagents were from the highest quality available and were purchased from Sigma (St. Louis, MO).

2.2. Cell culture and incubations

H–RS, Daudi and Jurkat cells were cultured in RPMI 1640 media supplemented with 10% (v/v) fetal bovine serum and antibiotics (10 U/ml penicillin and 10 μg/ml streptomycin). Cells were incubated with B2 (2.5–100 μM) for variable periods of time (3–72 h). The number of viable cells was measured by adding the cell ATP content using the CellTiter-Glo Luminiscent Cell Viability assay (Promega, Madison, WI).

2.3. Determination of cell oxidants

Cell oxidants were evaluated as previously described in Ref. [14] using the probe DCDHF. This probe can cross the membrane and fluoresces when it is oxidized inside the cell. Cells (1 × 10⁵) were incubated in the absence or presence of B2 for 3–48 h. Subsequently, cells were centrifuged at 800 × g for 10 min, rinsed with warm PBS and suspended in 200 μl of RPMI 1640 medium containing 10 μM DCDHF. After 30 min of incubation at 37 °C, the media were removed; cells were rinsed with PBS, and then incubated in 200 μl of PBS containing 0.1% (v/v) Igepal. After a brief sonication and 30 min incubation with regular shaking, the fluorescence at 525 nm (λexc: 475 nm) was measured. To evaluate DNA content, samples were added with 50 μM propidium iodide. After 20 min of incubation at room temperature, the fluorescence (λexc: 538, λem: 590) was measured. Results are expressed as the ratio DCF fluorescence/propidium iodide fluorescence.

2.4. Electrophoretic mobility shift assay (EMSA)

Nuclear fractions were obtained as described above and total cell fractions as previously described in Ref. [14]. Aliquots of nuclear or total fractions containing 25–40 μg protein were separated by reducing 10–12.5% (w/v) polyacrylamide gel electrophoresis and electroblotted to PVDF membranes. Rainbow molecular weight standards (GE Healthcare, Piscataway, NJ) were run simultaneously. For RelA and p50, membranes were blocked overnight in 5% (w/v) non-fat milk and subsequently incubated in the presence of the corresponding antibodies (1:1000 dilution) for 90 min at 37 °C. After incubation for 90 min at room temperature in the presence of the secondary antibody (HRP-conjugated) (1:5000 dilution), the conjugates were visualized by chemiluminescence detection in a Phosphoimager 840. To evaluate the bcl-2, bcl-xL, XIAP, cFLIP, phosho-IκBα, IκBα, phosho-STAT3 and STAT3 proteins, membranes were immunoblotted with the corresponding primary antibody (1:500 dilution) in 5% (w/v) bovine serum albumin overnight at 4 °C and the following day for 90 min at room temperature in the presence of the corresponding secondary antibody (HRP-conjugated). The conjugates were detected by enhanced chemiluminescence in a Phosphoimager 840 (GE Healthcare, Piscataway, NJ).

2.5. Western blot analysis

Nuclear fractions were obtained as described above and total cell fractions as previously described in Ref. [14]. Aliquots of nuclear or total fractions containing 25–40 μg protein were separated by reducing 10–12.5% (w/v) polyacrylamide gel electrophoresis and electroblotted to PVDF membranes. Rainbow molecular weight standards (GE Healthcare, Piscataway, NJ) were run simultaneously. For RelA and p50, membranes were blocked overnight in 5% (w/v) non-fat milk and subsequently incubated in the presence of the corresponding antibodies (1:1000 dilution) for 90 min at 37 °C. After incubation for 90 min at room temperature in the presence of the secondary antibody (HRP-conjugated) (1:5000 dilution), the conjugates were visualized by chemiluminescence detection in a Phosphoimager 840. To evaluate the bcl-2, bcl-xL, XIAP, cFLIP, phosho-IκBα, IκBα, phosho-STAT3 and STAT3 proteins, membranes were immunoblotted with the corresponding primary antibody (1:500 dilution) in 5% (w/v) bovine serum albumin overnight at 4 °C and the following day for 90 min at room temperature in the presence of the corresponding secondary antibody (HRP-conjugated). The conjugates were detected by enhanced chemiluminescence in a Phosphoimager 840 (GE Healthcare, Piscataway, NJ).

2.6. Measurement of cytokines

Cytokines were measured by ELISA. Briefly, cells (1.5 × 10⁶) were incubated for 48 h in the different experimental conditions. Cytokines (IL-6, TNFα and RANTES) released to the media were measured after separating the cells by centrifugation at 800 × g for 10 min. IL-6, TNFα and RANTES were measured by ELISA assays following the manufacturer’s protocols.

2.7. Statistical analysis

One-way analysis of variance (ANOVA) with subsequent post hoc comparisons by Scheffe was performed using Statview 512+ (Brainpower Inc., Calabazas CA). A p value < 0.05 was considered statistically significant. Values are given as mean ± S.E.M.
3. Results

Hodgkin’s cells consistently show a constitutive activation of NF-κB (Fig. 2A) as a consequence of different mechanisms of aberrant NF-κB activation. We have previously presented evidence that B2 could interact with NF-κB proteins inhibiting the binding of NF-κB to the DNA [14]. Thus, because B2 inhibits a late event in the NF-κB signaling cascade, we hypothesize that it could be effective in the inhibition of NF-κB in H–RS cells regardless of the presence of functional IκB inhibitory proteins. Low levels of IκBα were observed in L-540 and L-1236 cells compared to Jurkat T cells (Fig. 2A). These occur secondary to the activation of upstream events of the NF-κB pathway, which are still not fully characterized. KM-H2 and L-428 cells are characterized by mutations that lead to the absence of functional IκBα or of IκBα and IκBe, respectively (Fig. 2A) [5,16,17].

Fig. 2 – Constitutive NF-κB activation and cell oxidant levels in H–RS cells. (A) Upper left panel: NF-κB-DNA binding activity in nuclear fractions isolated from Jurkat cells incubated in the absence or presence of 20 ng/ml TNFα for 30 min. To determine the protein components of the active NF-κB, TNFα-treated samples were incubated in the presence of antibodies for p50 or RelA, for 30 min prior to the binding assay. Upper right panel: NF-κB-DNA binding activity in nuclear fractions isolated from Jurkat, KM-H2, L-428, L-540 and L-1236 cells measured by EMSA. Lower panel: phosphorylated IκBα (p-IκBα) and IκBα levels in total fractions isolated from Jurkat, KM-H2, L-428, L-540 and L-1236 cells measured by Western blot. β-tubulin is shown as loading control. (B) Basal oxidant levels were evaluated with the probe DCDHF as described under Section 2. DCF fluorescence was normalized to the propidium iodide (PI) fluorescence. (C) Cells were incubated for 3–48 h without or with 25 μM B2. DCF fluorescence was normalized to the propidium iodide (PI) fluorescence and the values are referred to those obtained for cells incubated in the absence of B2 (1.0). (B and C) Results are shown as mean ± S.E.M. of 3 independent experiments. (*) Significantly different from the untreated group (p < 0.05, one-way ANOVA test). (D) Phosphorylated IκBα (p-IκBα) and IκBα levels were measured by Western blot in total cell fractions isolated from L-428, KM-H2, L-540 and L-1236 cells incubated for 24 h in the absence or presence of 25 μM B2. One representative experiment is shown.
3.1. H–RS cells are characterized by a high production of cell oxidants

We previously observed that KM-H2 and L-428 cells are characterized by a high production of cell oxidants [20]. Therefore, we investigated the relative levels of cell oxidants in the different H–RS cell lines and its relationship to the constitutive levels of NF-κB activation. The levels of cell oxidants were measured with the probe DCDHF and results were referred to the DNA content (measured with propidium iodide). When compared to Jurkat T cells as a model of T cells without a constitutive activation of NF-κB, cell oxidant levels were 3-, 2-, 5- and 8.3-fold higher in KM-H2, L-428, L-540 and L-1236, respectively (Fig. 2B). The incubation of cells in the presence of 25 μM B2 for 3–48 h caused a partial decrease of cell oxidant levels (29–55% decrease, after 3 h of incubation) (Fig. 2C). The constitutive levels of NF-κB activation measured by EMSA in nuclear extracts did not show a correlation with levels of cell oxidants (Fig. 2A and B).

Next we evaluated if the increase in cell oxidant levels could lead to the activation of upstream events in the NF-κB pathway. After 24 h of incubation, no significant

Fig. 3 – B2 inhibits NF-κB-DNA binding in H–RS cells. NF-κB-DNA binding was measured by EMSA in nuclear fractions isolated from L-428, KM-H2, L-540, L-1236 and HDLM-2 cells incubated for 24 h in the absence or presence 2.5–50 μM B2. (A) One representative experiment is shown. (B–D) After the corresponding assays, bands were quantitated and results are shown as mean ± S.E.M. of 3 independent experiments. (*) Significantly different compared to untreated cells (p < 0.05, one-way ANOVA test). (B) B2 dose (2.5–50 μM)-dependent inhibition of NF-κB-DNA binding in KM-H2 (empty bars) and L-428 (full bars). (C) Inhibitory action of B2 on NF-κB-DNA binding in KM-H2, L-428, L-540, L-1236 and HDLM-2 incubated for 24 h in the absence (full bars) or presence (empty bars) of 25 μM B2. (D) RelA and p50 content was measured by Western blot in nuclear fractions isolated from cells incubated for 24 h without (−) or with (+) 25 μM B2.
differences in IκBα phosphorylation and IκBα total levels were observed in L-540 and L-1236 cells incubated without or with 25 μM B2 (Fig. 2D). No detectable levels of phosphorylated IκBα and IκBα were observed in KM-H2 and L428 cells (Fig. 2D).

3.2. B2 inhibits NF-κB-DNA binding in H-RS cells with different mechanisms of constitutive NF-κB activation

The incubation of KM-H2, L-428, L-540, L-1236 and HDLM-2 cells for 24 h in the presence of B2 led to a dose (2.5–50 μM)-

![Graphs showing cytokine levels](image)

Fig. 4 – B2 inhibits NF-κB-regulated gene expression in H-RS cells. (A) KM-H2 and L-428 cells were incubated for 48 h in the absence or presence of 2.5–50 μM B2. The concentration of IL-6, TNFα and RANTES released to the media was measured by ELISA. Results are mean ± S.E.M. of 3 independent experiments. (*) Significantly different compared to untreated cells (p < 0.05, one-way ANOVA test). (B) KM-H2, L-428, L-540 and L-1236 cells were incubated for 48 h in the absence or presence of 25 μM B2. The content of different anti-apoptotic proteins was evaluated by Western blot in total cell fractions as described in Section 2. One representative experiment out of 3 independent experiments is shown. N.D.: non-detectable.
dependent inhibition of NF-κB-DNA binding in nuclear fractions as measured by EMSA (Fig. 3A and B). The lowest concentration that caused a significant inhibitory effect was 10 μM B2 in KM-H2 cells. The extent of inhibition (41–48%) of NF-κB-DNA binding at 25 μM B2 was similar for the five cell lines investigated (Fig. 3C). These results indicate that B2 can inhibit NF-κB-DNA binding in all H-RS cells investigated, regardless of the absence of functional IκB inhibitory proteins.

The nuclear content of the main NF-κB protein components RelA and p50 was similar in H-RS cells incubated for 24 h in the absence or presence of 25 μM B2 (Fig. 3D). Given that under the same experimental conditions NF-κB-DNA nuclear binding was significantly lower in the H-RS cells treated with 25 μM B2 (Fig. 3C), these results support our proposed interaction of B2 with NF-κB proteins and therefore preventing the binding of the active NF-κB to its DNA κB sites.

We subsequently studied the consequences of the inhibitory action of B2 on NF-κB-DNA binding on the NF-κB-dependent transactivation of genes associated with the biological pharmacology 75 (2008) 1461–1471

<table>
<thead>
<tr>
<th>Cell line</th>
<th>B2 (25 μM)</th>
<th>IL-6 (pg/ml)</th>
<th>TNFα (pg/ml)</th>
<th>RANTES (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KM-H2</td>
<td>–</td>
<td>249.5 ± 43.3</td>
<td>98.0 ± 20.0</td>
<td>3257 ± 167</td>
</tr>
<tr>
<td>KM-H2</td>
<td>+</td>
<td>157.5 ± 17.8</td>
<td>38.1 ± 3.2</td>
<td>2449 ± 228*</td>
</tr>
<tr>
<td>L-428</td>
<td>–</td>
<td>168.4 ± 17.0</td>
<td>52.4 ± 6.7</td>
<td>3113 ± 438</td>
</tr>
<tr>
<td>L-428</td>
<td>+</td>
<td>120.7 ± 11.0</td>
<td>24.6 ± 4.7*</td>
<td>1372 ± 390*</td>
</tr>
<tr>
<td>L-540</td>
<td>–</td>
<td>35.8 ± 15.2</td>
<td>4.5 ± 1.1</td>
<td>1372 ± 99</td>
</tr>
<tr>
<td>L-540</td>
<td>+</td>
<td>14.9 ± 9.9</td>
<td>0.6 ± 0.4*</td>
<td>864 ± 177*</td>
</tr>
<tr>
<td>L-1236</td>
<td>–</td>
<td>1405.3 ± 75.2</td>
<td>374.2 ± 4.8</td>
<td>2120 ± 97</td>
</tr>
<tr>
<td>L-1236</td>
<td>+</td>
<td>1164.6 ± 30.6</td>
<td>249.9 ± 12.6*</td>
<td>1352 ± 206*</td>
</tr>
<tr>
<td>HDLM-2</td>
<td>–</td>
<td>1124.2 ± 94.3</td>
<td>79.1 ± 6.2</td>
<td>1553 ± 80</td>
</tr>
<tr>
<td>HDLM-2</td>
<td>+</td>
<td>933.9 ± 98.6</td>
<td>48.4 ± 12.7*</td>
<td>956 ± 55*</td>
</tr>
</tbody>
</table>

KM-H2, L-428, L-540, L-1236 and HDLM-2 cells were incubated for 48 h in the presence of 25 μM B2. The concentration of IL-6, TNFα and RANTES released to the media was measured by ELISA. Results are mean ± S.E.M. of 3 independent experiments. (*) Significantly different compared to untreated cells (p < 0.05, one-way ANOVA test).

3.3. B2 inhibits the release of NF-κB-dependent cytokines in H-RS cells

H-RS cells produce an array of cytokines and chemokines that attract a number of reactive cells (non-neoplastic lymphocytes, histiocytes, plasma cells, eosinophils and stromal cells) [2–4]. Several of these cytokines are regulated by NF-κB. Thus, we investigated if the B2-mediated inhibition of NF-κB-DNA binding could lead to a decreased transactivation of NF-κB-dependent cytokines (IL-6, TNFα and RANTES).

KM-H2, L-428, L-540, L-1236 and HDLM-2 cells were incubated for 48 h in the presence of B2 and the concentration of IL-6, TNFα and RANTES released was measured in the media by ELISA. Treatment of KM-H2 and L-428 cells with B2 led to a dose (2.5–50 μM)-dependent inhibition of IL-6, TNFα and RANTES secretion (Fig. 4A). The effect was significant at concentrations of 25 μM or higher for IL-6 and RANTES and at 10 μM or higher for TNFα in KM-H2 and L-428 cells. The amount of IL-6, TNFα and RANTES released to the media after 48 h shows a large variation among the different H-RS cells (Table 1). The largest inhibitory effects of B2 were observed for TNFα (33–87%). The inhibition of IL-6 secretion by B2 ranged from 17% to 58% among the different cell lines and for RANTES was similar for all the cell lines (25–38%) (Table 1). Thus, the inhibitory effect of B2 depended on the cytokine and on the cell line. In this regard, the effect of B2 depended in general on the basal level of cytokine secretion by each particular H-RS cell line.

3.4. B2 inhibits the expression of NF-κB-dependent anti-apoptotic proteins

Given the role of NF-κB in the resistance of cells to die by apoptosis, we subsequently investigated the effects of B2 on the expression of NF-κB-regulated proteins involved in the prevention of apoptosis (Bcl-xL, Bcl-2, XIAP, cFLIP).

As depicted in Fig. 4B, the studied H-RS cells were characterized by a remarkably different pattern of expression of anti-apoptotic proteins. The incubation of H-RS cells for 48 h in the presence of 25 μM B2 caused a decreased content of the Bcl-xL, Bcl-2, XIAP and cFLIP as measured by Western blot in total cell fractions (Fig. 4B). However, the incubation of cells for 24–72 h in the presence of 25 μM B2 did not cause a significant induction of apoptotic cell death as evaluated by the cell binding of Annexin-V, which is associated to phosphatidylserine externalization as an early marker of apoptosis (data not shown).

3.5. B2 leads to a partial decrease in cell viability only observed in cells with a constitutive activation of NF-κB

The possible effect of B2 on cell viability was next evaluated by measuring the ATP cell content (Fig. 5). We compared the effect of B2 in T and B cells of cancer origin that lack a constitutive activation of NF-κB (Jurkat and Daudi cells) with those on H-RS cells. While B2 did not affect cell viability in Jurkat and Daudi cells, KM-H2 and L-428 cells exhibited a time-dependent decrease in cell viability when cells were incubated with 25 μM B2 (Fig. 5A). The effect of different concentrations of B2 (2.5–100 μM) on cell viability after 72 h incubation was next investigated in all the cell lines. B2 did not have a significant effect on cell viability in Jurkat and Daudi cells along the range of concentrations tested. On the contrary, B2
caused a concentration (2.5–100 mM)-dependent partial decrease in cell viability that reached a maximum effect at 25 mM B2 (35–47% decrease) in all the H–RS cells tested (Fig. 5B).

3.6. B2 does not inhibit STAT3 and AP-1 constitutive activations in H–RS cells

We next evaluated if the partial effect of B2 on cell viability could be due in part to the fact that other signaling pathways overexpressed in H–RS cells may not be affected by B2. Both STAT3 and AP-1 are constitutively active in all the H–RS cells compared to Jurkat T cells, although at a different extent (Fig. 6A). STAT3 phosphorylation was also increased in H–RS cells compared to Jurkat T cells (Fig. 6B). The incubation of KM-H2, L-428, L-540 and L-1236 cells for 24 h in the presence of B2 did not inhibit either STAT3- or AP-1-DNA binding in nuclear fractions as measured by EMSA (Fig. 6C). Furthermore, STAT3 phosphorylation levels were similar for all H–RS cells when they were incubated in the absence or presence of 25 μM B2 (Fig. 6D).

4. Discussion

Constitutive NF-κB activation is a common characteristic of H–RS cells in culture as well as in cells isolated from Hodgkin’s patients [5,12]. Therefore, targeting NF-κB pathway emerges as a valuable therapeutic strategy in the treatment of HL. The

Fig. 5 – Effects of B2 on cells H–RS cell viability. (A) Time-dependent variations in cell viability were measured in Jurkat, Daudi, KM-H2 and L-428 cells after 24–72 h in the absence (full circles) or presence (empty circles) of 25 μM B2. (B) Dose-dependent cell viability was measured in Jurkat, Daudi, KM-H2, L-428, L-540 and L-1236 cells after 72 h in the absence (−) or presence of 2.5–100 μM B2. After quantitation, results are shown as mean ± S.E.M. of 5 independent experiments. (*) Significantly different compared to untreated cells (p < 0.05, one-way ANOVA test).
Present results showing that B2 can inhibit constitutive NF-κB activation and NF-κB-regulated anti-apoptotic proteins in H-RS cells suggest that B2 could be of potential use as an inhibitor of NF-κB in HL. On the other hand, given that B2 did not inhibit constitutive AP-1 and STAT3 activation, the moderate effects of B2 on H-RS cell viability may be due to the complex signaling aberrations present in HL. Thus, several signaling pathways should be targeted when designing targeted therapeutics for HL.

The molecular alterations that could lead to NF-κB constitutive activation in H-RS cells are heterogeneous and include: (a) a constitutive high activity of IKK leading to an increased IκBα degradation [5]; (b) mutations in the IκBα [15,16,18] and IκBε genes (10–25%) [17]; (c) amplifications of the c-Rel gene locus (54–80% of patients with classic HL) [21,22]; (d) overexpression of CD30 leading to a CD30-ligand-independent NF-κB activation (100%) [23] and (e) EBV-positive cases (40–50%), where NF-κB activation generally occurs secondary to the expression of the EBV-encoded latent protein 1 (LMP-1) which activates NF-κB [24]. The heterogeneity of the underlying molecular mechanisms leading to NF-κB activation indicates that molecules such as B2, that can inhibit a late event in the NF-κB activation pathway, could be one valuable tool for the targeted treatment of HL.

Reactive oxygen and nitrogen species are recognized triggering signals of NF-κB activation [25,26]. Thus, a constitutive high oxidant production could be a contributing factor to NF-κB activation in H-RS cells. Significantly, all the studied H-RS cells showed high levels of oxidants. Although the underlying mechanisms were not characterized, the binding of several cytokines to their receptors is associated with an increased oxidant production [27] that is attributed to a physiological mechanism of potentiation of cytokine-triggered signaling. No correlations between the levels of cell oxidants and of NF-κB activation were observed among the different H-RS cell lines. This is not unexpected given the differences in the underlying mechanisms of NF-κB activation.

B2 acted by partially inhibiting oxidant production in all the H-RS cell lines studied. In L-540 and L-1236 cells that possess the upstream regulatory NF-κB events (NIK-IKK-IκBα), the antioxidant action of B2 could be in part involved in the NF-κB inhibitory action of B2. However, probably due to the high amounts of oxidants produced by L-540 and L-1236 cells or to the involvement of oxidant-unrelated mechanism of NF-κB activation, B2 did not inhibit IκBα phosphorylation and/or prevent IκBα degradation. From the above, the antioxidant capacity of B2 is not a relevant mechanism involved in the inhibition of NF-κB by B2 in H-RS cells.

The finding that PMA or TNFα failed to stimulate NF-κB in H-RS cells indicates that these cells have a maximum level of constitutive NF-κB activation [5]. Nevertheless, B2 was active in inhibiting NF-κB-DNA binding and NF-κB-dependent gene
expression in H–RS cells. B2 inhibited NF-κB-DNA binding in a dose-dependent manner in all the H–RS cells studied and to a similar extent. Interestingly, the inhibition occurred in KM-H2 and L-428 cells, which due to mutations in the inhibitory IκB proteins lack the upstream inhibitory mechanisms. After 24 h incubation with B2, the nuclear content of the NF-κB proteins RelA and p50 was similar in both the absence or presence of B2. Taken together and as previously proposed [14], the above evidence supports a direct inhibition of B2 on the binding of NF-κB to its consensus DNA κB sites.

H–RS cells express and secrete several cytokines (IL-1α, IL-2, IL-4, IL-5, IL-6, IL-8, IL-13, TNFα, TNFβ, etc.) [28–32]. Some of them are transcriptionally regulated by NF-κB, while others can stimulate NF-κB and contribute to a cycle of NF-κB activation in H–RS cells. Besides the action of cytokines favoring H–RS proliferation and survival, they participate in the activation and chemotaxis of surrounding cells and in the immune deficiency and symptoms that characterize HL patients. In agreement with the observed inhibition of NF-κB-DNA binding activity, B2 also inhibited the release of several NF-κB-regulated cytokines in H–RS cells. Given the aforementioned relevance of cytokines in HL, the inhibition of cytokine production by H–RS cells can be critical in the progression of this disease.

The overexpression of NF-κB-driven genes associated with cell growth and apoptosis have been identified in H–RS cells. They include genes encoding for proteins involved in the regulation of the cell cycle and proteins that prevent apoptosis (Bfl-1/A1, c-FLIP, TRAF1 and Bcl-xL) and cell surface receptors (CD86 and CD40) [30,33]. Treatment with B2 also caused decreased expression of the NF-κB-regulated anti-apoptotic proteins Bcl-xL, XIAP and c-FLIP. Bcl-xL and Bcl-2 are members of the Bcl-2 gene family which protect cells from apoptosis by inhibiting the release of cytochrome c and of Smac/DIABLO from the mitochondria, which inactivates XIAP [34,35]. XIAP and FLIP prevent apoptosis by inhibiting caspases [34,36]. Although B2 partially decreased cell viability, it did not significantly affect the progression of the cell cycle, nor affect parameters of apoptosis within the cell viability, it did not significantly affect the progression of H–RS cell proliferation and resistance to apoptosis needs to be established to delineate an efficient targeted treatment of HL.

Acknowledgements

This work was supported by grants from the University of California Cancer Research Coordination Committee (CRCC) and Mars Incorporated, USA.

REFERENCES

