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Series explanation: State of the 
Art Reviews are commissioned 
on the basis of their relevance 
to academics and specialists 
in the US and internationally. 
For this reason they are written 
predominantly by US authors. Introduction

Bronchopulmonary dysplasia (BPD) is the most 
common complication of prematurity,1 affecting up 
to 45% of infants born at <29 weeks’ gestational 
age.2 Although advances in care have led to improved 
survival, BPD incidence has remained static or even 
increased.3 BPD is not merely a lung disease, but a 
systemic condition with lifelong implications for 
adult health and quality of life.4 5 The healthcare 
costs associated with BPD are substantial6 and 
extend beyond the initial hospitalization.7 BPD lacks 
an objective definition for accurate prediction of 
future mortality and morbidity.8 The development 
of an optimal definition is challenging, given the 
complex multifactorial nature and variable clinical 
presentation of the disease.9 Frequently used 
definitions of BPD from the National Institutes of 
Health (200110 and 201811) rely on the subjective need 
for various respiratory support modalities to identify 
and categorize severity of disease. This approach has 
important limitations. In this review, we appraise 
alternative models that could improve diagnostic 
accuracy and identify specific patterns of disease. 
Emerging approaches to diagnosis—proteomic, 
metabolomic, and microbiomic—are included in 
the review. We focus on existing interventions to 
prevent or mitigate the severity of BPD, and evaluate 
the evidence and recommendations made based 

on the US Preventive Services Task Force grading 
(supplementary files: table 1).12

Sources and selection criteria
We searched the PubMed, Embase, and Cochrane 
databases for the dates 1967 to September 
2020 for articles published in peer reviewed 
journals within the past two decades. Search 
terms included “bronchopulmonary dysplasia”, 
“chronic lung disease of prematurity”, 
“definition of bronchopulmonary dysplasia”, 
“bronchopulmonary dysplasia and pulmonary 
hypertension”, “bronchopulmonary dysplasia 
biomarkers”, “bronchopulmonary dysplasia 
and postnatal steroids”, “bronchopulmonary 
dysplasia and oxygen”, “less invasive 
surfactant and bronchopulmonary dysplasia”, 
“bronchopulmonary dysplasia and mechanical 
ventilation”, “bronchopulmonary dysplasia and 
imaging”, “bronchopulmonary dysplasia and lung 
function testing”, “bronchopulmonary dysplasia 
and diuretics”, “bronchopulmonary dysplasia 
and bronchodilators”, and “bronchopulmonary 
dysplasia guidelines”. We chose to focus on the 
results of randomized controlled trials (RCTs) and 
systematic reviews with an emphasis on results 
published after 2010. We included results of well 
designed retrospective studies, and prioritized 

ABSTRACT

Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease 
in infants and is associated with increased mortality, respiratory morbidity, 
neurodevelopmental impairment, and increased healthcare costs. In parallel with 
advances made in the field of neonatal intensive care, the phenotype of BPD has 
evolved from a fibrocystic disease affecting late preterm infants to one of impaired 
parenchymal development and dysregulated vascular growth predominantly 
affecting infants born before 29 weeks’ gestational age. BPD has been shown to 
have significant lifelong consequences. Adults with BPD have been found to have 
abnormal lung function tests, reduced exercise tolerance, and may be at increased 
risk for developing chronic obstructive pulmonary disease. Evidence shows that 
BPD occurs secondary to genetic-environmental interactions in an immature lung. 
In this review, we evaluate the various clinical definitions, imaging modalities, and 
biomarker data that are helpful in making an early diagnosis of BPD. In addition, we 
evaluate recent evidence about the prevention and treatment of BPD. We discuss the 
invasive and non-invasive ventilation strategies and pharmacological agents used in 
the early, evolving, and established phases of BPD.
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those that included at least 150 participants born 
before 29 weeks’ gestational age. Animal studies 
were included to ascertain biological plausibility. 
We included consensus statements and clinical 
guidelines published in peer reviewed journals. 
We also searched the website www.clinicaltrials.
gov using the terms “bronchopulmonary dysplasia” 
and “chronic lung disease of prematurity” to 
identify potential therapies currently undergoing 
investigation. We excluded articles not published in 
English and those that were not peer reviewed.

Why is an accurate diagnosis of BPD important?
The BPD phenotype has evolved, so that the 
emphysematous, fibrotic disease first described 
in 196713 is less commonly seen in contemporary 
clinical practice. A “new” pattern, characterized 
by alveolar simplification and pulmonary vascular 
dysregulation with functional impairment,14 
has become the predominant BPD phenotype 
encountered in neonatal intensive care units (NICUs). 
Rapid progress has been made in understanding 
the inciting, modulating, and mitigating factors 
that lead either to long term respiratory morbidity 
owing to lung repair, or healing and recovery (fig 1). 
Exposure to inflammation,15 placental vascular 
disease,16 hormonal deficiencies,17 genetics,18 and 
epigenetics19 influence the relative vulnerability or 
resilience of the respiratory system prior to preterm 
birth. Events occurring in the postnatal period such 
as late onset infection with bacterial or viral agents20 
can also have an adverse effect on short and long 
term outcomes. Variations in clinical care, including 
use of supplemental oxygen,21 positive pressure,22 

medications,23 and nutrients,24 provoke responses 
modulated by genetic and epigenetic influences. 
Infants with BPD show substantial heterogeneity in 
clinical presentation and long term outcomes.25-27 
The manner and precision with which BPD is defined 
have far-reaching consequences for translational 
and clinical research.8 For the clinician, an accurate 
diagnosis of BPD helps inform the use of specific 
respiratory support strategies and medications.

Evaluation of the NIH 2018 criteria
Early definitions of BPD relied on measures 
consistent with impairment of gas exchange in 
addition to radiographic abnormalities and clinical 
symptoms persisting for >28 days28 (fig 2). In 
1988, a single center retrospective study showed 
that continued use of supplemental oxygen at 36 
weeks’ post menstrual age (PMA) was more closely 
associated with abnormal pulmonary findings (as 
per the criteria listed in the study) upon long term 
follow-up in infants of <32 weeks’ gestational age 
than earlier diagnostic models.29 This observation 
was incorporated in the Shennan 1988 definition, 
which is frequently used in clinical research.30 The 
NIH 2001 definition10 diagnoses BPD if supplemental 
oxygen has been required for at least 28 days. The 
severity of disease is graded “mild”, “moderate”, or 
“severe” at 36 weeks’ PMA, or discharge for infants 
born at <32 weeks, or day of life (DOL) 56 for infants 
>32 weeks’ gestational age, according to the need for 
respiratory support.10

Studies that compare the NIH 2001 criteria10 with 
the 28 days28 and the Shennan 1988 definitions29 
are summarized in table 1.31-33 The incidence of 

↑ 

↓

Fig 1 | A summary of the inciting, protective, and modulating factors that influence the development of BPD. Prenatal factors that lead to 
impaired lung development have an impact on the postnatal course, increasing the likelihood of exposure to invasive mechanical ventilation and 
supraphysiological oxygen. Exposure to inflammation in utero also alters immune development and may predispose to a dysregulated prolonged 
response to relatively minor stimuli. Responses to injurious and protective influences are modulated by genetic and epigenetic mechanisms. 
BPD=bronchopulmonary dysplasia; GA=gestational age, NEC=necrotizing enterocolitis; Vit A=vitamin A
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mortality, growth failure, and neurodevelopmental 
impairment (NDI) was increased with statistical 
significance in infants with severe BPD.31 Other 

studies have linked severe BPD to NDI, indicating 
meaningful prognostic information.34 The 28 days 
definition increases the sensitivity, but decreases 

 

Fig 2 | Evolution in complexity of proposed definitions of BPD over time. BPD=bronchopulmonary dysplasia; GA=gestational age; IMV=invasive 
mechanical ventilation; CPAP=continuous positive airway pressure; FiO2=fraction of inspired oxygen; NIPPV=nasal intermittent positive pressure 
ventilation; NC=nasal cannula; LPM=liters per minute; PMA=post menstrual age; RA=room air

Table 1 | Studies comparing different BPD definitions in the post-surfactant era

Reference Study population Definition used Incidence

Relative predictive value for use of 
pulmonary medications and hospital 
readmission

31 4866 infants <32 weeks’ GA, <1000 g birth weight 
Born 1995-1999 
Follow-up information for 3848 infants available

Oxygen for 28 days28 77% Sens ++++ 
Spec +

Shennan29 44% Sens +++ 
Spec +++

NIH 200110 77% Sens ++++ 
Spec +

Mild 31% Risk insignificant
Moderate 30% Risk 1.5-2× that of no BPD
Severe 16% Risk at least 2× that of no BPD

32 765 infants 23+0 to 28+6 weeks’ GA prospectively enrolled in a multicenter 
research cohort

Shennan 
% unclassifiable

41% 
2.9%

NA

Physiological 
% unclassifiable

32% 
16%

NIH 2001 
% unclassifiable

58.6% 
2.1%

Mild 19.5%
Moderate 11.6%
Severe 27.5%

33 247 infants ≤ 30 weeks admitted to a level IV neonatal intensive care unit 2013-
2015

Shennan 39% NA
NIH 2001 71%
Mild 17%
Moderate 44%
Severe 49%

BPD=bronchopulmonary dysplasia; GA=gestational age; Sens=sensitivity; Spec=specificity; NA=not applicable; ++++ indicates value >80%, +++ value 50-60%, + value less than 25%.
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specificity, of adverse outcome prediction in mild 
BPD, compared with Shennan 1988.30 31

Comparing NIH 2001, physiological, and Shennan 
1988 definitions showed considerable barriers to 
their use in current clinical practice.32 Around 2-16% 
of infants were not classified because of variations 
in the use of nasal cannula and failure to perform 
an oxygen reduction test (ORT) (table 1); thus, 
this makes a strong argument for a new consensus 
definition to encompass contemporary respiratory 
strategies.

A workshop sponsored by the National Institute for 
Child Health and Human Development (NICHD) led 
to a revised definition (NIH 2018)11 (fig 2). High flow 
nasal cannula (HFNC) and severely affected infants 
who die from respiratory causes prior to 36 weeks’ 
PMA were included in the definition. Supplemental 
oxygen need for 28 days was removed as it lacks 
precision in predicting long term outcomes,31 and 
is often misinterpreted as need for oxygen on DOL 
28.30 Instead, infants with persistent radiographical 
evidence of parenchymal lung disease who remained 
on respiratory support were classified according to 
the therapy required to maintain oxygen saturation 
(SpO2) at 90-95% at 36 weeks’ PMA.11 One major 
change proposed was that infants would need to be 
on the stated respiratory support for a minimum of 
three consecutive days with the intent of minimizing 
up- or down-classification based on acute clinical 
events.

Use of the NIH 2018 criteria identified a greater 
proportion of patients than either the Shennan 
1988 or NIH 2001 definitions.35 Infants who 
were diagnosed BPD of any grade using the NIH 
2018 criteria were more likely to develop other 
comorbidities than those without BPD (P<0.001) 
suggesting a high degree of sensitivity in predicting 
short term outcomes. The ability of the NIH 2018 
definition of BPD to predict long term outcomes has 
not been assessed.

Several limitations remain.36 Firstly, the decision 
for respiratory support still lies with the clinician. 
Decisions about the need for respiratory support are 
often based on subjective assessment of the infant’s 
work of breathing, frequency of apnea/bradycardic 
events, ability to take adequate oral feeds, or 
maintenance of an optimal growth trajectory. At 
36 weeks’ PMA, preterm infants may still have 
immature respiratory control that manifests as 
periodic breathing or apneic events. Diuretics37 
and bronchodilators38 may influence the need for 
respiratory support, and their use varies markedly 
between centers39 and may influence reporting of 
BPD. The revised definition also fails to differentiate 
infants with BPD associated pulmonary hypertension 
(BPD-PH). The European Pediatric Pulmonary 
Vascular Disease Network (EPPVDN) recommends an 
evaluation for any infant of <28 weeks’ gestational 
age with severe respiratory compromise at 36 weeks’ 
PMA, and at discharge in those with established 
BPD.40 Transthoracic echocardiography (TTE) can 
identify infants at risk of BPD-PH as early as DOL 

7.41 TTE screening in a clinical BPD definition may 
provide more accurate prognostic information, 
given the increased incidence of adverse outcomes 
associated with BPD-PH.25 27 Variation in the mean 
airway pressure generated by different modes of non-
invasive support—for example, HFNC versus nasal 
intermittent positive pressure ventilation (NIPPV) 
—could lead to significant phenotypic heterogeneity. 
The degree of positive pressure required could signify 
large airway disease such as tracheomalacia,42 
underlying parenchymal disease, or immature 
respiratory control.

Alternative clinical definitions for BPD
One of the main criticisms leveled at NIH 2018 was 
the use of semi-quantitative categories and arbitrary 
thresholds to assign disease severity, rather than 
the creation of a model based on critical outcomes 
such as death and NDI.36 In a retrospective study 
that tested 18 potential definitions against outcome 
data obtained from the NICHD Neonatal Research 
Network,43 the models tested were found to predict 
late death or serious respiratory morbidity with a 
c-statistic ranging from 0.741 to 0.785. A model that 
defined severity by the support mode at 36 weeks’ 
PMA without reference to oxygen requirement 
was found to correlate most closely with adverse 
outcomes, predicting death or serious respiratory 
morbidity in 81% of study infants. This optimal 
definition (table 2), referred to as Jensen 2019, was 
also most effective in the prediction of late death 
or NDI with a c-statistic of 0.747. Consistent with 
evidence linking chronic mechanical ventilation 
to cerebral palsy,44 the population of infants who 
remain on invasive mechanical ventilation at 36 
weeks’ PMA is at particularly high risk for adverse 
outcomes. The ability of Jensen 2019 to separate 
infants dependent on invasive versus non-invasive 
ventilation or nasal cannula with a fraction of 
inspired oxygen (FiO2) >0.3 would be of benefit when 
evaluating the impact of novel therapies designed to 
mitigate the severity of BPD. These criteria also have 
the benefit of being easy to apply in clinical practice 
and in research studies because of the omission of 
the ORT.

Some important limitations include that these 
criteria were tested on infants born at gestational 
age <32 weeks, and most were ≤27 weeks. Jensen 
2019 may therefore lack sensitivity and specificity 
in predicting outcomes in infants born at >27 
weeks’ gestational age. The choice of 36 weeks 
as a time point for assessment continues to offer 
potential for infants to be “up-classified” for needing 
respiratory support to compensate for impaired 
control of breathing or difficulties coordinating oral 
feeding. A retrospective study utilizing data from the 
Canadian Neonatal Network suggested that allowing 
for assessment at 40 weeks’ PMA may improve the 
predictive value of a BPD diagnosis.45 The need for 
oxygen or respiratory support ≥ nasal cannula 1.5 
liters/minute at 36 weeks’ PMA was found to have 
the greatest value in predicting serious respiratory 
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morbidity (adjusted odds ratio (AOR) 3.4, 95% 
confidence interval (95% CI) 1.8 to 6.3). Only 2.5% 
of infants who did not meet criteria for BPD went on 
to develop serious respiratory morbidity according 
to the study definition. The need for supplemental 
oxygen or respiratory support at 36 weeks’ PMA 
was found to have marginally greater accuracy in 
predicting serious neurosensory impairment than 
other “traditional” BPD definitions (AOR 1.7, 95% 
CI 1.2 to 2.4).45 When the criteria of supplemental 
oxygen and/or respiratory support with > 1.5 liters/
minute by nasal cannula was applied at different 
gestational ages, improved ability to predict severe 
respiratory morbidity was noted at 40 weeks’ 
PMA (AOR 6.4, 95% CI 3.4 to 11.0). The optimal 
time to apply the criteria for prediction of severe 
neurosensory morbidity was noted to be at 37 weeks’ 
gestational age (area under the curve or AUC=0.743, 
AOR 1.8, 95% CI 1.3 to 2.6); however, application 
of the definition at 40 weeks yielded similar results 
(AUC=0.74, AOR 1.5, 95% CI 1.0 to 2.1). This is 
perhaps not surprising, as an evaluation performed 
later in time is more likely to be predictive of a more 
distant event. An ORT was not routinely performed, 
limiting accuracy of the data. One of the greatest 
difficulties in moving the time point of assessment to 
40 weeks is that many infants will have already met 
criteria for discharge. Those who are breathing room 
air without support at 36 weeks’ PMA are unlikely 
to require oxygen or support at 40 weeks’ PMA. 
However, infants with a relatively modest oxygen 
requirement who meet all other prerequisites for 
discharge may be anomalously classified as BPD, if 
assessment is delayed for several weeks.

In summary, the NIH 2001 definition of BPD 
is poorly reflective of current respiratory support 
strategies32 with the “mild” category of BPD having 
limited predictive value for long term morbidity.31 
The NIH 2018 definition11 is more easily applicable to 
contemporary neonatal care; however, these criteria 
have yet to be validated with long term outcomes in a 
large preterm population. The accuracy in predicting 
long term outcomes could be improved by moving the 
assessment from 36 to 40 weeks’ PMA.45 However, 

this could make obtaining information on infants 
who are discharged earlier on supplemental oxygen 
problematic. The evidence based Jensen 2019 
definition seems the most promising in providing a 
relatively simple means of predicting outcomes.43 
Further discussions regarding refinements to clinical 
definitions should be informed by both the Jensen 
201943 and the 40 weeks’ PMA evidence based 
definitions.45

Physiological measurements in the diagnosis of BPD
A physiological definition for BPD using SpO2 
during an ORT was first described in a single center 
prospective observational study in 2003, and a 
refined version applied in a larger multicenter 
prospective observational study.46 Infants requiring 
FiO2 >0.3 or invasive mechanical ventilation or 
continuous positive airway pressure (CPAP) to 
maintain SpO2 at 90-95% at 35-37 weeks’ PMA were 
classified as having BPD. Infants on nasal cannula 
1-2 liters/minute who either required FiO2 <0.3 at 
rest to maintain SpO2 90-96% or were maintaining 
saturations >96% breathing FiO2 >0.3 were eligible 
to undergo an ORT. Those who maintained SpO2 ≥ 
90% breathing FiO2 0.21 for 30 minutes were then 
classified as “no BPD.”46 Use of the physiological 
definition was found to result in a significant decrease 
in the rate of diagnosis (mean reduction 10%; range 
0-44%) and reduced variation in incidence of BPD 
between institutions.46 One potential limitation of 
the physiological definition when compared with 
the NIH 2001 classification is the binary outcome 
of “BPD” versus “no BPD.” A more nuanced method 
that evaluates SpO2 during a stepwise reduction of 
supplemental oxygen in order to derive the degree of 
right shift of the oxygen saturation curve, ventilation 
perfusion ratio (Va/Q), and right-left shunt in 
preterm infants has been evaluated in a prospective 
observational study.47 Right shift, and the magnitude 
of the right-left shunt was found to increase and Va/Q 
found to decrease in accordance with BPD severity as 
per the NIH 2001 definition.47 Although the “shift 
test” is non-invasive and can be performed in 25-30 
minutes, it does require the use of an oxygen analyzer 

Table 2 | Comparison between the predictive value of criteria selected to closely replicate the NICHD definition of BPD10 
and alternative parameters as tested by Jensen et al using a population of 2677 infants ≤32 weeks43

 
Treatment with the following support at 36 weeks PMA or at discharge, whichever 
comes first

Predictive accuracy of definition 
(c-statistic)

  RA: 
Mild BPD: ≥ 21% 
FiO2 for ≥ 28 days 
No BPD: no 28 day 
assessment

NC ≤2LPM NC ≥2LPM nCPAP 
NIPPV

IMV Mortality or serious 
respiratory morbidity

Mortality or 
moderate to 
severe NDI

FiO2 <0.3 FiO2 
≥0.3

NIH 2001 
definition

Mild BPD Moderate BPD Severe BPD 0.741 0.727

Jensen et al 
alternative 
definition

No BPD Grade 1 BPD Grade 2 BPD Grade 3 
BPD

0.785* 0.747*

Shaded boxes represent criteria selected by Jensen et al to closely match the NICHD definition. Nasal cannula flow ≥2 liters/minute (LPM) was used as 
a surrogate for CPAP or non-invasive pressure ventilation. *P<0.001 in comparison with NIH 2001 definition, PMA=post-menstrual age; RA=room air; 
NC=nasal cannula; LPM=liters per minute; FiO2=fractional inspired oxygen concentration; nCPAP=nasal continuous positive airway pressure; NIPPV=nasal 
intermittent positive pressure ventilation; IMV= invasive mechanical ventilation; NDI=neurodevelopmental impairment defined as a Bayley Scales of 
Infant and Toddler Development, 3rd edition, cognitive or motor composite score <85, Gross Motor Function Classification System level greater than or 
equal to 2, bilateral blindness and/or severe hearing impairment that cannot be corrected with amplification.
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and is yet to be validated in a large population of 
preterm infants. Although the ORT and the “shift 
test” offer potential as non-invasive objective tests, 
these may not be easily incorporated in research or 
clinical care. A prospective cohort study enrolled in 
the Prematurity and Respiratory Outcome Program 
showed that 32% of infants met the criteria for 
“physiological” BPD compared with 58.6% and 
40.8% with NIH 2001 or Shennan 1988 definitions, 
respectively.32 A recent systematic review found that 
only 5% of studies conducted between 2010 and 2015 
reported “physiological” BPD as an outcome.30 An 
observational study revealed significant episodes of 
periodic breathing in 43.2% of infants who failed the 
ORT.48 This finding indicates immature respiratory 
control may be an important confounding factor 
limiting the validity of the physiological definition.

Pulmonary function testing has been proposed to 
gain meaningful information in the diagnosis of BPD 
and validation of proposed definitions.49 50 Preterm 
birth and very low birth weight (VLBW) status have 
been consistently associated with diminished lung 
capacity,51-53 increased airway obstruction,51-54 
impaired gas exchange,51 and a premature decline 
in respiratory function.53 54 Longitudinal assessment 
by lung function and respiratory questionnaire has 
played a role in BPD outcomes55 56; however, it is 
limited by the need for specialist equipment and 
expertise.50 Serial measures of lung function and 
assessment of respiratory morbidity should form part 
of the routine follow-up of infants with BPD.57

Radiographical studies in the prediction of BPD
Among imaging modalities, plain chest radiography 
and computed tomography scanning remain 
the most extensively studied in BPD.58 Several 
different radiographic abnormalities have been 
associated with continued oxygen requirement 
at 36 weeks’ PMA, including chronic pulmonary 
edema59 and a “bubbly” cystic appearance.59 60 A 
scoring system applied to radiographs on DOL 7 
was found to correlate better with BPD diagnosis 
at DOL 28 than certain readily available clinical 
data.61 A pattern of interstitial pneumonitis noted 
on DOL 7 was independently associated with the 
combined outcome of death before 36 weeks’ PMA 
or BPD (odds ratio [OR] 4.0, 95% CI 1.1 to 14.4).62 
Measurement of the chest radiograph thoracic area 
(CRTA) has potential as a quantitative predictor of 
altered pulmonary mechanics.63 64 Elevated CRTA 
obtained from radiographs in the first 48 hours of life 
and decreased functional residual capacity (FRC) on 
DOL 3 was associated with BPD in intubated preterm 
infants.63 Increased CRTA and decreased FRC were 
indicative of gas trapping with low functional lung 
volumes. Reduced FRC had strong predictive value 
for the development of moderate to severe BPD. 
Increased CRTA measurements in preterm infants 
already meeting the criteria for BPD have been 
associated with impaired oxygenation.64 Using CRTA 
in combination with functional measurements may 
potentially be of use in the prediction of BPD.

Despite considerable drawbacks, computed 
tomography is recognized as the optimal method 
to obtain detailed pulmonary images. Several 
qualitative,65 semi-quantitative,66 and quantitative67 
scoring systems have been proposed to predict the 
severity of long term respiratory outcome in BPD.58 
Most scoring systems involve rating of the degree of 
peri-bronchial wall thickening, areas of decreased 
attenuation, and the presence and severity of 
bullae and bronchiectasis. Computed tomography 
scoring systems correlate with a range of adverse 
physiological and clinical outcomes including 
duration of oxygen therapy,66 desaturation events 
during sleep,67 incidence of wheezing,65 likelihood 
of hospital admission,65 clinical severity scores,66 68 
and progressive decline in forced expiratory volume 
inone second (FEV1) in patients who have had BPD.53 
Although computed tomography findings were more 
specific for BPD than those of plain radiographs,66 

68 the considerable exposure to radiation, increased 
cost of the procedure, and need for either patient 
cooperation or deep sedation has limited the use of 
computed tomography. The European Respiratory 
Society (ERS) guidelines recommend follow-up 
imaging with ionizing radiation only in the most 
severely affected patients.57

In contrast, ultrasound does not require exposure 
to ionizing radiation and can be performed at the 
patient’s bedside. An ultrasound scoring system 
involving evaluation of three different areas of the 
lung with a semi-quantitative score has shown some 
potential for predicting moderate to severe BPD.69 
Lung ultrasound showed that failure of scores to 
improve with diuretic therapy was associated with 
worse respiratory outcome.70 If validated in a larger 
population, it could be useful in informing treatment 
as well as prognosis.

Ultra-short echo time (UTE) MRI has begun to 
emerge as an exciting new technique in respiratory 
imaging.71 MRI with UTE may provide a similar degree 
of information to computed tomography in preterm 
infants, without the disadvantages of exposure to 
ionizing radiation or deep sedation.72 Both structural 
and functional evaluation is possible, offering insight 
into the impact of cystic pulmonary lesions73 and 
tracheomalacia74 on respiratory mechanics. An MRI 
protocol identified an association between increased 
T2 and decreased T1 relaxation times to predict BPD 
with an AUC of 0.8.75 Functional MRI could play a 
key role in defining specific phenotypes and may 
eventually replace chest computed tomography as 
the high resolution modality of choice for BPD.

Biomarker based approaches
The identification of various biomarkers76 
or genomic, proteomic, metabolomic,77 or 
microbiomic78 79 signatures specific for BPD holds 
considerable promise as a strategy to develop a 
comprehensive, objective definition (table 3). It is 
already accepted that susceptibility to BPD is in 
part determined by genetic inheritance18 and the 
contribution of epigenetic mechanisms is also likely 
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to be considerable.19 89 Among the advantages of 
biomarker and “omic” diagnostic strategies are the 
ability to identify markers of risk versus those of 
resilience at an early stage, and the potential to limit 
exposure to interventions with documented side 
effects. These measures could also offer a means 
by which to evaluate different disease phenotypes 
within the BPD population, and they remain an 
important focus for continued research.

Management—early and evolving BPD
Use of supplemental oxygen
Strategies that prevent BPD by interventions in the 
delivery room have strong potential to influence long 
term outcomes.90 Use of FiO2 0.21 for resuscitation of 
term infants is associated with improved outcomes,91 
but for preterm infants, outcomes are uncertain.92 
Data from a meta-analysis of RCTs that analyzed 251 
and 253 infants who were enrolled in eight studies 
(six masked, two unmasked) in the lower and higher 
oxygen groups, however, have shown no advantage 
to initiation of resuscitation with FiO2 0.3 versus 0.6 
in preventing BPD (RR 0.88, 95% CI, 0.68 to1.14),93 
despite biological plausibility.94 Differences in 
methodology could have an important influence as, 
for example, mortality was found to be significantly 
lower in the low oxygen group in masked RCTs where 
oxygen was titrated by a researcher (RR 0.46, 95% 
CI, 0.23 to 0.92, P=0.03) and significantly higher in 
unmasked trials where oxygen was adjusted by the 
clinical team (RR 1.94 (1.02 to 3.68), P=0.04).93 At 
present, the only clear recommendation, based on an 
individual patient analysis of eight RCTs, is to initiate 
continuous monitoring of SpO2 promptly after birth 
and to titrate supplemental oxygen to achieve a SpO2 
measurement of >80% by 5 minutes of life given the 
association between hypoxia at this time point and 
increased mortality.95

Data from the Neonatal Oxygenation Prospective 
Meta-analysis collaborative study showed that use 
of the lower target range (85-89%) was associated 
with increased risk for mortality prior to discharge 
(RR 1.17, 95% CI 1.04 to 1.31, P=0.01).96 Use 
of the higher saturation target (91-95%) was not 
found to be associated with an increased incidence 
of “physiological” BPD.96 A systematic review and 
meta-analysis of five RCTs failed to show an impact 
of either a low or high saturation target on the 
incidence of BPD.97 Therefore, we recommend the 
use of saturation targets within the range 90-95% for 
infants requiring supplemental oxygen.

Early respiratory support and surfactant 
administration
Use of sustained inflations at birth in preterm 
neonates requiring delivery room resuscitation 
does not reduce the risk of BPD.98 Administration 
of exogenous surfactant has not shown a reduction 
in the incidence of BPD.99 Pooled results of three 
major RCTs comparing early CPAP with prophylactic 
surfactant administration100-102 found only marginal 
improvements in the incidence of BPD.103 Meta-

analyses data have shown no advantage of early 
InSURE technique over initiation of CPAP.104 
Minimally invasive surfactant treatment (MIST) 
and LISA techniques employ either a semi-rigid 
catheter or flexible feeding tube to deliver surfactant 
during spontaneous breathing, usually on nasal 
CPAP (nCPAP).105 The largest multicenter RCT that 
compared the outcomes of infants with extremely 
low birth weight receiving LISA with those receiving 
endotracheal surfactant did not find a significant 
reduction in BPD (67.3% infants survived without 
BPD versus 58.7% in the control group, with an 
absolute risk reduction of 8.6% [95% CI, -5.0% to 
21.9%; P=0.20] in BPD.106 In another study,107 the 
greatest benefit of survival without BPD was in infants 
26+0 to 28+6 weeks’ gestational age. A systematic 
review of RCTs including 5598 infants in 30 studies 
showed that LISA may have significant benefit in 
reducing the composite outcome of death or BPD 
at 36 weeks’ PMA (OR 0.49; 95% credible interval 
[CrI], 0.30 to 0.79) and CPAP alone (OR 0.58; 95% 
CrI 0.35 to 0.93).108 Few adverse effects have been 
reported with LISA, most being bradycardia during 
instillation of surfactant that can often be addressed 
by transiently pausing instillation and continuing 
over a slower time frame.105 A cohort study indicated 
that LISA is associated with a substantial increase 
in spontaneous intestinal perforation (SIP), most 
marked in infants of <26 weeks’ GA (LISA 10.0 v ETT 
7.4%, P=0.029).109 This finding warrants further 
evaluation in a larger prospective RCT.

RCT and meta-analyses data support the early 
initiation of CPAP in the delivery room for those at 
risk of BPD.101-104 Meta-analyses data revealed a 
small but significant reduction in the outcome of 
BPD for infants who were initially supported with 
CPAP compared with those who were intubated 
and given surfactant,103 and a follow-up study101 
revealed an association between CPAP use and 
reduced respiratory morbidity.56 The beneficial 
effect of nCPAP on long term respiratory outcomes 
may be underestimated owing to 33-50% of the 
infants randomized to nCPAP eventually requiring 
intubation and invasive mechanical ventilation.100 
The likelihood of CPAP failure is highest in the most 
immature infants,110 and has been associated with 
increased risk of BPD.111 Among strategies that reduce 
the failure rate of nCPAP in infants of extremely low 
birth weight, aside from early use of caffeine, most 
are based on a physiological rationale rather than 
high quality RCT data.44 Various strategies can be 
used to generate CPAP—ventilator driven CPAP, use 
of a flow driver, and “bubble CPAP.”112 Evidence to 
suggest superiority of any one CPAP modality over 
another is limited. Meta-analysis data have shown 
reduced failure rates of bubble CPAP compared with 
ventilator or flow driver regulated CPAP (RR 0.75, 
95% CI 0.57 to 0.98); however, use of bubble CPAP 
was not associated with reduced risk for BPD.113

NIPPV involves brief elevations of pressure above a 
baseline of nCPAP support and promotes respiratory 
stability by recruiting and stabilizing collapsed 
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alveoli.114 Elevations in pressure can be either 
synchronized with the infant’s own efforts (SNIPPV) 
or unsynchronized. When compared with NCPAP, 
systematic reviews have shown that early use of 
NIPPV is associated with reduced need for intubation 
in preterm infants.115 116 However, this effect was not 
significantly associated with reduced risk for BPD.117

Invasive mechanical ventilation
If invasive mechanical ventilation cannot be 
avoided, the use of volume targeted ventilation 
(VTV) strategies should be strongly considered.118 
A meta-analysis of 20 RCTs and quasi-randomized 
trials revealed that VTV was associated with reduced 
risk for the combined outcome of death or BPD at 
36 weeks (RR 0.73, 95% CI 0.59 to 0.89, number 
needed to treat (NNT) 8, 95% CI, 5 to 20).119

Primary use of high frequency ventilation (HFOV) 
in several RCTs was not consistently shown to 
decrease BPD.120 Primary use of HFOV was not 
associated with any significant improvement in lung 
function when evaluated between 16 and 19 years 
of age.121 No strong recommendations can therefore 
be made regarding use of elective HFOV in preterm 
infants at risk of BPD.

The requirement for invasive ventilation at DOL 
7 has been shown consistently to be associated 
with increased risk for BPD.122 123 A single center 
retrospective study has shown that for infants 

of extremely low birth weight and <28 weeks’ 
gestational age, extubation after DOL 8 is associated 
with a significantly increased hazard of developing 
BPD, compared with extubation between DOL 1 
and 3 (hazard ratio (HR)16.9, 95% CI 10.5 to 27.1, 
P<0.001) and DOL 4-8 (HR 10.0, 95% CI, 6.1 to 16.3; 
P<0.001).123 A similar reduction in the combined 
outcome of BPD and death was not affected by need 
for reintubation.123 The inflammatory response in 
the first few days of life is possibly different and less 
persistent, compared with later postnatal ages, and 
could potentially account for the improved pulmonary 
outcome.15 124 A large multicenter retrospective study 
has shown that the total number of days of positive 
pressure delivered via an endotracheal tube is more 
predictive of adverse long term pulmonary outcomes 
than the number of courses of invasive mechanical 
ventilation.125 Earlier extubation was associated 
with reduced supplemental oxygen requirement at 
36 weeks’ PMA and shorter length of hospital stay 
in another retrospective study where the need for 
reintubation was also not shown to influence either 
mortality or incidence of BPD.126 However, another 
recent retrospective study showed a significant 
association between recommencement of invasive 
mechanical ventilation and the composite outcome 
of BPD or death.127 The relation between reintubation 
and death or moderate to severe BPD was strongest 
when invasive mechanical ventilation was 

Table 3 | A summary of selected biomarkers associated with BPD and/or BPD-PH
Marker category Specimen Pattern conferring increased risk for BPD or BPD-PH
Growth factors/vascular integrity 
markers/nitric oxide pathway 
markers12 80 81

Cord blood Elevated: endostatin; decreased: Ang1, PIGF 
Elevated: VEGF, PDGF-BB, BMP-10, FGF-19, HGF82

Blood Decreased: L-arginine, Ang1, FGF-18, PDGF-AA82 
Increased: Ang 2, nitrites

TA Decreased: VEGF; elevated: VEGF receptor
Cytokines and pro-inflammatory 
molecules12 80 81 83

Blood Elevated: IL-1β, IL-6, IL-8, E-selectin, IFNγ, GCSF 
Decreased: IL-17, RANTES, TNF-β, soluble L-selectin, MCP-1

TA Elevated: IL-6, IL-8, NF-κB, MCP-1, MCP-2, MCP-3, IL-1β:ILRA ratio
Epithelial or fibrotic markers12 80 81 TA Elevated: MMP-8, MMP-9/TIMP-1, TGFβ 

Decreased: TIMP-2, MMP-2, NGAL
Blood Elevated: TGFβ, KL-6, MMP/TIMP-1

Oxidant injury markers77 TA Elevated: elastase, myeloperoxidase, xanthine oxidase, catalase, total sulfhydryls, epithelial lining carbonyls, 
3-chlorotyrosine, malondialdehyde

Proteomic signatures77 TA Increased: surfactant protein-A2, annexin-3, calcium and integrin binding protein-1, 
Decreased: leukocyte elastase inhibitor, calcyphosine

Metabolomic signatures77 Amniotic fluid Increased: leucinic acid, byproducts of fatty acid oxidation 
Decreased: DHEAs, s-adenosylmethionine

Cord blood Increased: oxylipins, PGE1, PGE2, PGF2a, 9- and 13-HOTE, 9- and 13-HODE, and 9- and 13-KODE84 
Decreased: sphingomyelins, phospholipids84

TA Increased: byproducts of fatty acid oxidation and estrogen and testosterone synthesis85 histidine, glutamic acid, 
citrulline, glycine and isoleucine, acyl carnitines (fatty acid oxidation), sphingolipids, sphingomyelin C18:1 and 
C22:3, lysophosphatidylcholine86 
Volatile organic compounds detected by “electronic nose”87

Microbiomic patterns77 TA Increased: Enterobacteriae, Ureaplasma, Staphylococcus 
Decreased: Lactobacillus

Gene expression patterns77 88 Blood Increased: inflammatory response genes, CD44, phosphorus oxygen lyase activity, connective tissue mast cells 
Decreased: T cell receptor related activation genes

Epigenetic markers77 TA Elevated: miR-34a 
Decreased: miR-876-3p, miR-378b, miR-20a-50, +miR-20b-5p, miR-1254, miR-1252-5p

Blood Elevated: miR-219
Ang=angiopoietin; BMP=bone morphogenic protein; DHEAs=dehydroepiandrosterone sulfate; FGF=fibroblast growth factor; GCSF=granulocyte colony stimulating factor; HGF=hepatocyte growth 
factor; HOTE/HODE/KODE=oxooctadecadienoic acids resulting from fatty acid oxidation; IFN=interferon; IL=interleukin; KL-6=Krebs von den Lungen-6; MCP=monocyte chemoattractant protein; 
miR=microRNA; MMP=matrix metalloproteinase; NF-κB=nuclear factor kappa B; NGAL=neutrophil gelatinase-associated lipocalin; PDGF=platelet derived growth factor; PGE=prostaglandin; 
PIGF=placental derived growth factor; RANTES=regulated upon activation normal T cell expressed and presumably secreted; TA=tracheal aspirate; TIMP=tissue inhibitor of matrix 
metalloproteinase; TNF=tumor necrosis factor; VEGF=vascular endothelial growth factor.
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recommenced within 48 hours of the first extubation 
attempt, a finding that maintained significance 
even when adjusted for total duration of invasive 
mechanical ventilation (OR 12.76, 95% CI, 1.38 to 
117.62).127 Interestingly, reintubation was not found 
to be associated with increased risk for moderate to 
severe BPD alone (OR 1.09, 95% CI, 0.38 to 3.15).

In summary, current evidence continues to 
support the need for proactive weaning of invasive 
mechanical ventilation during the first week of life 
and consideration for a trial of extubation in infants 
who tolerate weaning to low settings, even if long 
term success is not guaranteed.126

Caffeine
Early initiation of caffeine therapy, within the first 
three days of life, has a significant impact in reducing 
BPD128 129 and associated long term neurological 
morbidity.130 An RCT showed that initiation of 
caffeine within 10 days of life significantly reduced 
the incidence of BPD (AOR 0.63, 96% CI 0.53 to 0.76, 
P<0.001).90 Lung function studies performed on 
children aged 11 who had overcome BPD and were 
enrolled in the same study revealed a significant 
improvement in expiratory flow in those who 
received caffeine (FEV1: mean Z score; -1.0 versus 
1.53; mean difference, 0.54, 95% CI, 0.14 to 0.94, 
P=0.008).131 Subgroup analysis of a trial,132 together 
with other studies133 134 indicated that the greatest 
benefit was obtained by infants who receive caffeine 
within the first three days of life. Questions remain 
regarding the optimal dosage and timing of caffeine 

initiation to prevent or mitigate BPD. An RCT is under 
way to compare the effect of earlier (2 hours of life) 
with later (12 hours of life) initiation of caffeine 
(NCT03086473).

Postnatal steroids
The use of postnatal steroids for the prevention 
and mitigation of BPD remains a controversial 
topic (table 4). Early use of dexamethasone has 
been consistently associated with reduced duration 
of mechanical ventilation and a reduction in the 
outcome of BPD; this is at the cost of increased risk 
of NDI and cerebral palsy.135 Use of dexamethasone 
is therefore strongly discouraged in the first week 
of life. After the first week of life, treatment with 
postnatal glucocorticoids may reduce the incidence 
of NDI in infants at high risk for poor pulmonary 
outcomes.141 Administration of a low dose course of 
dexamethasone (0.89 mg/kg over 10 days) to infants 
on mechanical ventilation after one week of life was 
found to be associated with increased likelihood 
of extubation at the end of treatment (OR 11.2, 
95% CI 3.2 to 39.0) but not with reduced BPD.142 
Follow-up did not find any adverse consequences or 
improvements in neurodevelopmental outcome.143 
Postnatal dexamethasone should therefore 
continue to be reserved for the infants at highest 
risk of developing BPD who remain dependent on 
mechanical ventilation beyond 21 days of life.144

An individual patient meta-analysis of four RCTs 
(table 4)138 145-147 showed treatment with low dose 
hydrocortisone to be associated with a significant 

Table 4 | A summary of the effects of systemic glucocorticoid treatment

Study description

Time on 
respiratory 
support

BPD at 36 
weeks

Death or BPD at 
36 weeks’ PMA Home oxygen Cerebral palsy

Cerebral palsy 
or death

Late onset 
sepsis SIP

Meta-analysis of RCTs 
using dexamethasone in 
preterm infants <8 days 
of life135

Failure to 
extubate at 7 
days 0.71 (0.64-
0.84)

0.71 (0.62-0.85) 0.87 (0.80-0.94) 0.78 (0.48-1.26) 1.75 (1.20-2.55) 1.17 (1.00-1.37) 1.02 (0.91-1.15) RD 0.03 (0.01-
0.05)

GRADE: Moderate to 
high

6 RCTs, n=703 16 RCTs, n=2584 16 RCTs, n=2581 3 RCTs, n=691 7 RCTs, n=921 7 RCTs, n=921 14 RCTs, n=2821 9 RCTs, n=1936

Meta-analysis of RCTs 
using dexamethasone 
in preterm infants >7 
days136

Failure to 
extubate by day 
7 of Rx 0.65 
(0.59-0.72)

0.77 (0.67-0.88) 0.77 (0.70-0.86) 0.71 (0.54-0.94) 1.16 (0.82-1.64) 0.95 (0.78-1.15) 1.14 (0.97-1.34) 1.60 (0.28-9.31)

GRADE: Moderate to 
high

15 RCTs, n=761 11 RCTs, n=580 11 RCTs, n=580 7 RCTs, n=611 16 RCTs, n=919 16 RCTs, n=919 18 RCTs, n=1349 3 RCTs, n=159

Single patient analysis 
of RCTs using low dose 
hydrocortisone in the 
first week of life 
Preterm infants mean GA 
25.2 to 26.9 weeks137 
GRADE: High

No significant 
difference in 
number of days’ 
ventilation. 
Extubation prior 
to 10 days of life. 
2.07 (1.42 -3.02 
P=0.002). 
1 RCT138 
n=522

0.73 (0.54-0.98 
P=0.038) 
4 RCTs 
n=982

Survival without 
BPD 
1.45 (1.11-1.90 
P=0.007) 
≥26 weeks 1.52 
(1.07-2.17) 
Chorio 
2.01 (1.19-3.39 
P=0.009) 
4 RCTs 
n=982

0.92 
(0.64-1.33) 
4 RCTs 
n=982

0.95 (0.56-1.60) 
4 RCTs 
n=709 (came for 
follow-up)

N/R 1.34 (1.02-1.75) 
>26 weeks 
1.14 (0.78-1.65) 
P=0.5 
Chorio 
1.91 
(1.18-3.08 
P=0.009) 
4 RCTs 
n=982

2.5 (1.33-4.69 
P=0.004) 
No Indo 
1.52 (0.73-3.15 
P=0.26) 
4 RCTs 
n=982

RCT of hydrocortisone 
72.5 mg/kg/22 days in 
PT infants dependent on 
MV at 7-14 days139 
GRADE: High

Failure to 
extubate by day 
7 of Rx 
0.34 (0.21-0.54, 
P<0.001)

1.24 (0.82-1.86) 0.87 (0.54-1.38) NR NR NR 0.80 (0.61-1.05) RD −2.5 (-6.8-
1.5)

Data shown as odds ratio (95% confidence interval). BPD=bronchopulmonary dysplasia; chorio=chorioamnionitis; GA=gestational age; indo=indomethacin. MV=mechanical ventilation; NR=not 
recorded; PMA=postmenstrual age; PT=preterm; RD=risk difference; RCTs=randomized controlled trials; Rx=treatment; SIP=spontaneous intestinal perforation. GRADE classification, as per 
Guyatt et al.140x
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increase in survival without BPD (OR 1.45, 95% 
CI, 1.11 to 1.90, P=0.007) and a decrease in the 
outcome of BPD (OR 0.73, 95% CI, 0.54 to 0.98, 
P=0.38). Subgroup analysis showed that BPD-
free survival was enhanced in infants exposed to 
chorioamnionitis but failed to reach significance 
for infants with gestational age <26 weeks. An RCT 
that evaluated the later use of hydrocortisone at a 
higher dose in infants who remained dependent 
on mechanical ventilation did not show any 
improvement in the outcome of BPD.139 In contrast 
with the early use of dexamethasone, early low 
dose hydrocortisone has not been associated with 
increased risk of neurosensory impairment.148 In 
summary, treatment with low dose hydrocortisone in 
the first week of life, but not a later or higher dose, is 
associated with a small but significant improvement 
in the diagnosis of BPD, especially in infants exposed 
to chorioamnionitis.137 149 Long term pulmonary 
benefits resulting from a reduction in the outcome of 
BPD are yet to be determined.

Regarding early inhaled budesonide, in an RCT 
with 437 infants given budesonide versus 417 given 
a placebo, in reducing the outcome of BPD (RR 
0.74, 95% CI 0.60 to 0.91, P=0.004), the composite 
outcome of death or BPD was partially offset by a 
non-statistically significant trend towards increased 
mortality in the intervention group (RR 1.24, 95% 
CI 0.91 to 1.69, P=0.17).150 The 2 year outcomes 
of the study revealed that the early trend towards 
increased mortality in the intervention group 
reached significance (RR 1.37, 95% CI, 1.01 to1.86, 
P=0.04)151 For this reason, early use of inhaled 
budesonide is not recommended to prevent BPD.

Diuretic therapy
Chronic, mild pulmonary edema was included in 
the initial description of the “New BPD” phenotype 
and both loop and thiazide diuretics continue to be 
commonly used in preterm infants with evolving and 
established BPD.152 153 Diuretic use is more common 
in extremely preterm infants who are on higher levels 
of respiratory support154 155 and the relation between 
initiation of therapy and improvement in respiratory 
status has been inconsistent.154 156 Although a 
significant association between increased duration of 
furosemide exposure and reduced incidence of BPD 
was noted in a large multicenter retrospective cohort 
study,155 given the study design, it is not possible to 
infer causality. As furosemide therapy is linked with 
multiple adverse consequences,157 including reduced 
weight gain, electrolyte losses, nephrocalcinosis,158 
and metabolic bone disease159; diuretics should be 
used judiciously in preterm infants with treatment 
limited to those that show clinical improvement.

Inhaled bronchodilators
The phenotype of BPD is associated with hypertrophy 
of the smooth muscle surrounding the airways and 
inflammation.160 The fixed and reversible component 
to airway hyper-reactivity in preterm infants may 
be more pronounced in those with BPD, as noted 

by consistently reduced spirometry values.49 A 
systematic review and meta-analysis measuring 
bronchial hyper-responsiveness (BHR) in adults and 
children born preterm with and without BPD revealed 
that the risk of BHR was increased in participants with 
BPD for both methacholine challenge (OR 2.59, 95% 
CI, 1.50 to 4.50) and exercise challenge (OR 5.13, 
95% CI, 1.82 to 14.47). To date there is no evidence 
linking inhaled steroids and bronchodilators with 
either reduction in BPD or mortality.161 The ERS 
advises the use of bronchodilators only in infants 
with severe BPD who have asthma-like symptoms 
(dry cough/wheezing), exercise induced symptoms, 
frequent hospital admissions, and show reversibility 
on testing.57

Nutritional strategies
The ability to maintain lung growth and repair 
is dependent on adequate postnatal nutrition. A 
retrospective cohort study revealed that both lower 
energy intake during the first four weeks of life and 
increased fluid intake were significantly associated 
with BPD.162 Relative fluid restriction, early 
introduction of enteral feedings, and optimization of 
parenteral nutrition components should be strongly 
considered. An RCT revealed a significant reduction 
in BPD in infants given donor milk relative to the 
formula supplemented group (15% versus 28%, 
P=0.048).163 Exclusive feeding with fresh maternal 
breast milk was significantly associated with a 
decrease in BPD (OR 0.40, 95% CI, 0.27 to 0.67, 
P<0.001).164 Maintenance of an exclusive human 
milk diet, ideally the use of fresh maternal breast 
milk, is recommended in the management of infants 
with early and evolving BPD.

Management—established BPD
If there is concern for BPD-PH,165 SpO2 targets 
are usually ~95% (ranging from 92% to 98%).12 
Additional agents may be required, but description 
of the management of BPD-PH is beyond the scope 
of this review.

Ventilator management for the subset of infants 
with severe BPD is especially challenging, with 
limited high quality data available to guide the 
clinician.166 The two major phenotypes of severe BPD 
are predominantly atelectatic or cystic.166 167 In the 
former type, higher positive end expiratory pressures 
(PEEP), up to 12 cm H2O may be required, with tidal 
volumes of 4-7 mL/kg. In the cystic type, moderate 
PEEPs of 4-8 cm H2O with higher tidal volumes of 10-
12 mL/kg are required to provide optimal oxygenation 
and ventilation.166 167 For infants still requiring 
invasive ventilation at 90-100 days of life, with >5-7 
failed attempts at extubation, a tracheostomy should 
be considered.168 Tracheostomy has been associated 
with improved growth and development.169 
Information about long term ventilation in babies 
with established BPD are available,170  171 although 
beyond the scope of this review. In patients 
with established oxygen dependent BPD, the 
use of prednisolone was successful in weaning 
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supplemental oxygen.172 Diuretics are continued, 
as in the early and evolving phases of BPD.12 More 
evidence based data are required to guide diuretic 
therapy in established BPD.173 Use of beta-agonists, 
with or without anticholinergics, may be employed 
in infants with BHR.12

Recommendations for initiation and weaning 
home oxygen support are shown in table 5.167 174 
Infants often receive chronic diuretic therapy despite 
scarce data to support this practice or guidelines 
to discontinue them, post-discharge from the 
NICU.175 A subset of patients will continue to receive 
inhaled steroids and bronchodilator therapy post 
discharge.175

Guidelines for management of BPD
Table 6 summarizes recommendations for the clinical 
management of infants with early, evolving, and 
established BPD. Many of these recommendations 
are our own, based on evidence from the literature; 
however, we have included several recommendations 
by the ERS.57 The recommendation to target SpO2 for 
infants discharged on supplemental oxygen is in 
agreement with guidance issued from the American 
Academy of Pediatrics (AAP) Committee of the Fetus 
and Newborn (COFN) and ERS.188 189 The ERS and 
AAP COFN advocate early use of CPAP in respiratory 
distress syndrome, early administration of caffeine, 
and selective administration of surfactant.189 190 For 
invasive mechanical ventilation, a volume targeted 
approach is recommended.189 ERS and AAP COFN 
guidelines differ in the technique recommended for 
surfactant delivery. Current ERS guidelines advocate 
less invasive surfactant administration (LISA) 
whereby surfactant is delivered during spontaneous 

breathing via a semi-rigid catheter or a feeding tube 
placed in the airway. In contrast, the AAP COFN 
guidelines recommend consideration for delivery 
using the intubation surfactant administration and 
rapid extubation technique (InSURE). AAP COFN 
guidelines, however, do not reflect some of the more 
recent evidence emerging regarding the potential 
advantages of LISA that have emerged in the past 
seven years.104

The American Thoracic Society (ATS), American 
Heart Association (AHA), and EPPVDN recommend 
that infants with established BPD should undergo 
screening for BPD-PH.40 191 The lack of an 
international consensus guideline on the diagnosis 
of BPD is a major obstacle to progress in clinical 
research and should be an important focus for future 
collaboration.30

Emerging treatments
As research continues to highlight the critical role 
played by intrauterine exposures in the development 
of BPD and BPD-PH, interventions that occur in the 
antenatal period may have the potential to offer 
protection. Maternal smoking is an important risk 
factor for persistent respiratory disease in preterm 
infants.192 RCT evidence shows that antenatal 
vitamin C supplementation is associated with 
improved pulmonary function tests and reduced 
incidence of wheezing during infancy in newborns 
whose mothers smoked tobacco during pregnancy.193 
No evidence suggests that antenatal vitamin C 
supplementation is of benefit in preventing BPD.

Intrauterine infection and inflammation have also 
been strongly implicated in the development of BPD.15 
A phase I placebo controlled RCT of N-acetylcysteine 

Table 5 | Home supplemental oxygen therapy for established BPD: initiation and weaning
Criteria for home use of oxygen: initiation
Postmenstrual age at least 36 weeks
Medical problems Absence of apnea; stabilized or regressed ROP
Growth Weight gain of at least 20 g/day
Immunization Completed as appropriate for postnatal age; received first dose of RSV prophylaxis, if appropriate
Flow rate Stable for at least 1 week on flow rate of 1-2 L/min FiO2 1.0, and maintaining saturations ≥92%
Home monitoring Availability of continuous SpO2 monitoring and downloading data capability
Home environment Adequate caregiver teaching and home supplies
   
Criteria for home oxygen use: weaning
Follow-up Every 4 weeks, or sooner, if needed
Weaning process Wean flow 1/4 to 1/8 LPM or 0.25 to 0.1 LPM 

Increase flow if SpO2 <93% 
Target SpO2 ≥92-96% 
Consider a slower wean if BPD-PH is present 
Consider not weaning if growth is inadequate 
Wean to room air when awake, first, then:
Overnight oximetry test 
If SpO2 >90% for 98% time of the study, wean to room air. 
Can consider weaning to room air if SpO2 >90% for 96% time of the study with no low saturation values and absence of artifacts, except when other 
co-morbidities exist (BPD-PH, inadequate growth) 
Repeat oximetry in room air
Overnight polysomnography 
Discontinue O2 if there is less than 20 minutes SpO2 <92%, no continuous desaturation <92% for more than 5 minutes or only infrequent desaturations 
of 4% causing arousal without evidence of obstruction
Stable in room air 
Keep O2 cylinder and pulse oximeter at home for use as needed for at least 3 months to allow for acute deteriorations, eg, URIs

Adapted from refs 167 174-176 BPD-PH=bronchopulmonary dysplasia-pulmonary hypertension; LPM=liters per minute; ROP=retinopathy of prematurity; RSV=respiratory syncytial virus; URI=upper 
respiratory tract infections.
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administration in women presenting in preterm 
labor with confirmed intrauterine infection or 
inflammation showed a dramatic reduction in the 
incidence of BPD in infants born to mothers in the 
treatment group (RR 0.1, 95% CI, 0.01 to 0.73). 
Data from a larger scale RCT are required before this 
approach is incorporated into clinical practice.

Use of exogenous surfactant as a medium to deliver 
budesonide directly to the airspaces has shown 
promise in reducing the outcome of BPD.181  194 In 
an RCT, the effects of a preparation of 0.25 mg/kg 
budesonide combined with 100 mg/kg surfactant 
(Survanta, Abbott Laboratories, Abbott Park, IL) 

was compared with 100 mg/kg surfactant alone, 
in a group of 265 intubated VLBW infants.181 The 
primary outcome of death or BPD was significantly 
reduced in the interventional group (42% versus 
66%, RR 0.58, 95 % CI 0.44 to 0.77, P<0.001, 
NNT 4.1). The incidence of BPD was reduced in 
the intervention group (29% versus 50%, RR 0.70, 
95% CI 0.58 to 0.86, P<0.001) without significant 
increase in mortality. A meta-analysis195 reported a 
43% reduction in the risk for BPD in the intervention 
group (RR 0.57, 95% CI, 0.43 to 0.76, NNT 5) with a 
decrease in the combined outcome of BPD or death (RR 
0.60, 95% CI, 0.49 to 0.74, NNT 3). The budesonide 

Table 6 | Management of BPD according to phase (early, evolving, and established)
Therapeutic intervention Current status Evidence level Recommendation level
Early phase (up to 1 postnatal week)
Oxygen supplementation Resuscitation:

Titrate supplemental oxygen to obtain preductal oxygen saturation >80% by 5 minutes of life93 I B
Maintain oxygen saturations 90-95%96 I A

Ventilatory strategy Trial of CPAP for spontaneously breathing infants I A
Consider surfactant administration if FiO2 remains consistently >0.4 on PEEP +6 cm H2O I B
Use InSURE/LISA technique to administer surfactant I B
Consider volume targeted ventilation strategies: TV 4-6 mL/kg119 I A
Use short inspiratory times (0.3-0.4 s),177 rapid rates (40-60 per min) and low PIP on pressure 
control settings (14-20 cm H2O), moderate PEEP (4-6 cm H2O)178 PaO2: 40-60 mm Hg; PaCO2 
:45-55 mm Hg179

III B

Trial of extubation to NIPPV/SNIPPV prior to 7 days in infants who tolerate weaning to minimal 
settings180

II-2 B

Methylxanthines Administration of caffeine within first 3 days of life decreases BPD128 132 I A
Intratracheal administration of 
budesonide and surfactant

Associated with an increase in BPD free survival (NNT 4.1 [95% CI 2.8 to 7.8])181 
Studies to date not adequately powered to assess long term neurodevelopmental outcome

I B

Vitamin A Improves BPD free survival with reported NNT 14-15182 Dose: 5000 IU given intramuscularly 3 
times a week for 4 weeks

I A

Low dose hydrocortisone Low dose hydrocortisone (total dose 8.5 mg over 10 days) is associated with increased BPD 
free survival 
Increased risk of late onset sepsis in infants <26 weeks137 
Increased risk of SIP in infants who receive indomethacin137

I C

Fluids Restrictive fluid intake may decrease BPD183 II-2 B
Nutrition Exclusive human milk feeding reduces the risk for BPD163 I A

Provide increased energy intake162 II-2 A
Evolving BPD (> 1 postnatal week to 36 weeks’ PMA)
Dexamethasone Low dose dexamethasone (0.89 mg/kg over 10 days) facilitates extubation but does not 

reduce BPD142
I C

High dose dexamethasone (0.5 mg/kg-1 mg/kg) reduces BPD but may increase the risk of NDI 
and CP184 
Greatest global benefit is for infants with risk of BPD >66%—ie, those who remain intubated at 
3-4 weeks postnatal age141 185

I C

Ventilatory strategy Avoid endotracheal tube ventilation, encourage non-invasive support strategies (NIPPV, 
SNIPPV, nCPAP)180

I A

Blood gas targets: pH 7.25-7.35; PaO2 50-70 mm Hg; PCO2 50-60 mm Hg179 
No advantage to allowing higher CO2 limit186

I A

Diuretics May improve respiratory mechanics and facilitate weaning of support. Do not prevent BPD. 
Continue use only if clear response demonstrated37

I B

Nutrition Same as for early phase I A
Methylxanthines Same as for early phase I A
Established phase ( >36 weeks’ PMA)
Echocardiographic screening for 
BPD PH

25% of infants with moderate or severe BPD have echocardiographic evidence of pulmonary 
hypertension40

III A

Bronchodilators May improve symptoms in subpopulations of affected infants57 II-3 B
Inhaled steroids Later use may improve symptoms in subpopulations of infants57 III B
Diuretics Chronic therapy as for the evolving phase37 I B

Consider allowing infant to outgrow dose57 III B
Nutrition Same as for early and evolving phase. Avoid excessive weight gain II-2 A
Immunization Prophylaxis against RSV and influenza decreases re-hospitalization and morbidity 

RSV prophylaxis is cost effective187
I A

Adapted from Bhandari et al12 BPD=bronchopulmonary dysplasia; CP=cerebral palsy; FiO2=fraction of inspired oxygen; InSURE=intubation, surfactant administration, extubation; 
IVH=intraventricular hemorrhage; LISA=less invasive surfactant administration; nCPAP=nasal continuous positive airway pressure; NDI=neurodevelopmental impairment; NIPPV=nasal 
intermittent positive pressure ventilation; PEEP=positive end expiratory pressure; PIP=peak inspiratory pressure; RSV=respiratory syncytial virus; SNIPPV=synchronized NIPPV; SIP=spontaneous 
intestinal perforation; TV=tidal volume.
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in babies trial (NCT04545866) has been designed to 
evaluate the pulmonary and neurodevelopmental 
outcomes of infants of 22-28+6 gestational age who 
receive a combination of 0.25 mg/kg budesonide and 
2.5 mL/kg surfactant with those who had 2.5 mL/kg 
surfactant alone. This trial is currently recruiting and 
likely to report in 5-6 years’ time.

Deficiencies in insulin-like growth factor 1 (IGF-1) 
have been shown to be linked to the pathogenesis of 
BPD.196 A phase II clinical trial designed to evaluate 
the safety and efficacy of recombinant human IGF-
1 complexed with its binding protein (rhIGF-1/
rhIGFBP-3) in the prevention of retinopathy of 
prematurity noted a statistically significant decrease 
in the incidence of BPD in the 61 infants who 
received the treatment (21.3% treated versus 44.9% 
standard care; P=0.04).197 This effect was even more 
pronounced in the 24 infants in whom IGF-1 levels in 
the target range were reached (4.8% treated versus 
44.9% standard care; P=0.02).197 A large placebo 
controlled RCT designed to evaluate the benefit of 
rhIGF-1/rhIGFBP-3 is ongoing (NCT03253263) and 
likely to report in 5-6 years’ time.

Mesenchymal stem cell (MSC) based therapies 
have shown great potential for the management of 
a range of different neonatal conditions including 
BPD.198 Findings from a phase II RCT investigating 
the effect of intratracheal administration of MSCs 
to preterm infants of 23-28 weeks’ gestational 
age showed a reduction in the incidence of severe 
BPD in a subgroup of infants born at 23-24 weeks’ 
gestational age (19% treatment group [3/16] versus 
53% placebo group [8/15]).199 A larger multicenter 
phase II trial focusing on the use of intratracheally 
delivered MSCs in infants of 23-25 weeks’ gestational 
age is under way (NCT03392467). A clinical trial 
evaluating the safety of intravenously administered 
bone marrow MSC derived extracellular vesicles in 
preterm infants of 23-26 weeks’ gestational age is 
also in progress (NCT03857841).

Conclusions
BPD is a complex multifactorial lung condition 
that is also associated with other pathologies that 
affect preterm infants such as NDI and growth 
failure. The lack of an objective definition of BPD 
poses a significant challenge to the evaluation of 
new treatments.200 The Shennan 1988 definition29 
remains the most consistently used criterion to 
define BPD in clinical studies.30 The NIH 2001 
outcome of severe BPD, known to be associated with 
significantly increased morbidity and mortality,31 is 
frequently not reported. The NIH 2018 definition is 
yet to be validated in a large neonatal population. As 
work continues in the development of more objective 
criteria defined by biomarkers or “omic” technology, 
the consistent use of clinical definitions with the 
potential to differentiate subjects with the highest 
risk for mortality and morbidity should remain 
a strong consideration. Despite advances in the 
understanding of the pathogenesis of BPD, relatively 
few of the treatments available are supported by 

high quality evidence. Novel therapies to prevent 
or mitigate the severity of BPD therefore have the 
potential to transform healthcare outcomes for a 
growing population of survivors of prematurity.
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