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Abstract Salt-losing tubulopathies with secondary hyper-
aldosteronism (SLT) comprise a set of well-defined
inherited tubular disorders. Two segments along the distal
nephron are primarily involved in the pathogenesis of SLTs:
the thick ascending limb of Henle’s loop, and the distal
convoluted tubule (DCT). The functions of these pre- and
postmacula densa segments are quite distinct, and this has a
major impact on the clinical presentation of loop and DCT
disorders – the Bartter- and Gitelman-like syndromes.
Defects in the water-impermeable thick ascending limb,
with its greater salt reabsorption capacity, lead to major salt
and water losses similar to the effect of loop diuretics. In
contrast, defects in the DCT, with its minor capacity of salt
reabsorption and its crucial role in fine-tuning of urinary
calcium and magnesium excretion, provoke more chronic
solute imbalances similar to the effects of chronic treatment
with thiazides. The most severe disorder is a combination
of a loop and DCT disorder similar to the enhanced diuretic
effect of a co-medication of loop diuretics with thiazides.
Besides salt and water supplementation, prostaglandin E2-
synthase inhibition is the most effective therapeutic option
in polyuric loop disorders (e.g., pure furosemide and mixed
furosemide–amiloride type), especially in preterm infants

with severe volume depletion. In DCT disorders (e.g., pure
thiazide and mixed thiazide–furosemide type), renin–
angiotensin–aldosterone system (RAAS) blockers might
be indicated after salt, potassium, and magnesium supple-
mentation are deemed insufficient. It appears that in most
patients with SLT, a combination of solute supplementation
with some drug treatment (e.g., indomethacin) is needed for
a lifetime.
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Introduction

Basic renal physiology and mechanisms of solute
reabsorption in the distal nephron

The preservation of electrolyte homeostasis and thus water
balance is vital to the entire organism. It is the primary
responsibility of the kidney to maintain this vital milieu
interior. The primary urine is formed by glomerular
filtration. Because of their small size, salts fall through the
glomerular filter and thus need to be reabsorbed in the renal
tubule. Around one third of filtered salt load is reabsorbed
in the distal nephron: about 25% in the thick ascending
limb (TAL) of Henle`s loop (loop) and around 10% in the
distal convoluted tubule (DCT) and the cortical collecting
duct (CCD). The primary role of the TAL is the
concentration of salt in the interstitium as a prerequisite
for countercurrent exchange and the urinary concentration
mechanism. This segment is practically impermeable to
water and actively pumps large portions of sodium chloride
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out of the filtrate, generating the hypertonicity of the
interstitium that drives countercurrent exchange. The DCT
plays an important role in fine-tuning renal excretion not
only of sodium chloride but especially of divalent cations
such as calcium and magnesium. The DCT can be further
subdivided into an early segment (DCT1), a late portion
(DCT2), and the connecting tubule (CNT) that leads over to
the CCD. These subsegments are characterized by the
expression of different ion transport proteins responsible for
salt and divalent cation reabsorption.

The reabsorption capacity of the total distal nephron
needs to be regulated and even fine-tuned depending on
nutritional intake and/or extrarenal losses of salt and water.
One of the best-studied checkpoints of this fine-tuning
process along the distal nephron is the macula densa (MD).
It is a key player in coupling renal hemodynamics with
tubular reabsorption in a way that enables chloride
concentration monitoring in the tubular fluid and thereby
provides a feedback mechanism that matches glomerular
filtration with tubular salt load [tubuloglomerular feedback
(TGF)]. Regulation of glomerular arterial resistance is
achieved partly by modulation of the renin-angiotensin II
system and intrarenal cyclo-oxygenase (COX)-2 activity
[1–3]. Thus, genetic or acquired defects of distal tubular
functions, which are quite specific and unique for individual
nephron segments, will have a major impact on the clinical
presentation of pre- and post-MD salt-loosing tubulopathies
(SLTs) or of loop and DCT disorders, respectively. In the
first case, the water-impermeable TAL – with its greater salt
reabsorption capacity and herewith its crucial role in TGF –
is impaired, leading acutely to major salt and water losses
similar to the effect of high-ceiling loop diuretics. In the
second case, DCT, with a minor capacity for salt reabsorp-
tion, is impaired, leading to extracellular volume depletion.
For some time, this can be compensated for by hyper-
aldosteronism but at the expense of potassium imbalance.

Salt reabsorption in the thick ascending limb (TAL)
of Henle’s loop (loop)

In the TAL, sodium and chloride are actively taken up into
tubular cells via the electroneutral sodium–potassium-2-
chloride co-transporter NKCC2 (encoded by the SLC12A1
gene) that is the target of loop diuretics such as furosemide
(Fig. 1a). Sodium is then actively pumped out of the TAL
cell by basolateral sodium–potassium–adenosine triphos-
phatase (Na-K-ATPase), whereas chloride leaves the cell
basolaterally through specific chloride channels termed
ClC-Ka and ClC-Kb (encoded by the CLCNKA and
CLCNKB genes). The operation of both chloride channels
is dependent on an accessory protein, the β-subunit barttin.
In contrast, potassium is recycled across the apical
membrane back into the tubular fluid through the

potassium-permeable ion channel, the renal outer medullary
potassium channel, Kir 1.1 (ROMK), encoded by the
KCNJ1 gene). Active salt reabsorption thereby produces a
lumen-positive transepithelial potential, which serves as the
driving force for the passive paracellular reabsorption of
calcium and magnesium in this tubular segment.

Solute reabsorption in the distal convoluted tubule (DCT)

As in the TAL, transepithelial salt transport requires the
activity of the basolateral Na-K-ATPase (Fig. 1b). In the
early DCT, the energy provided by the electrochemical
gradient for sodium is utilized by apically expressed
sodium chloride cotransporter NCCT (encoded by the
SLC12A3 gene) for the uptake of chloride against its
electrochemical gradient together with sodium. Chloride
then passively exits the tubular cell, as in the TAL, through
basolaterally expressed chloride channels (mainly ClC-Kb).
Thiazide diuretics therapeutically inhibit the activity of
NCCT. The NCCT is expressed mainly in DCT1 with
gradually decreasing expression in DCT2 where its expres-
sion slightly overlaps with more distally located epithelial
sodium channels (ENaC). Magnesium reabsorption in DCT
is active and transcellular in nature and involves an apical
entry into the DCT cell probably through a specific ion
channel, which is formed by TRPM6, a member of the
transient receptor-potential ion-channel family [4]. The
process of basolateral extrusion is still unknown at the
molecular level. As the hypocalciuria observed in patients
with NCCT defects is also present in thiazide-treated
TRPV5−/− mice, which lack the apical calcium channel
in the DCT required for active calcium reabsorption, the
hypocalciuria was attributed to an increase in calcium
reabsorption in the proximal tubule during phases of
volume depletion [5]. This mechanism was confirmed
directly by micropuncture studies in this murine knockout
model. At the same time, the authors of that study observed
a critical down-regulation of TRPM6 expression as a
possible mechanism for renal magnesium wasting in DCT
disorders.

Salt reabsorption in the aldosterone-sensitive distal
nephron (ASDN)

Unlike in the TAL and early DCT in which transcellular
sodium reabsorption is directly coupled to chloride trans-
port, in the more distally located nephron segments, sodium
can also be reabsorbed separately from chloride through
apically located amiloride-sensitive ENaC (Fig. 1c).
Expression of these channels is under direct influence of
aldosterone. Again, sodium uptake is driven by the action
of basolateral Na-K-ATPase. For reasons of electroneutral-
ity, each sodium ion that enters the tubular cell requires a
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secreted cation. Therefore, sodium reabsorption by ENaC is
coupled to potassium secretion via ROMK potassium
channels in the apical membrane of CCD cells.

Short historical overview and introduction
of pharmacology-based classification

As Bartter’s group was the first to identify marked hyper-
aldosteronism in patients with SLTs and to recognize the
contribution of this factor to the disordered potassium and
acid-base homeostasis, the term Bartter syndrome (BS) was
introduced for this condition [6]. The DCT variant of BS,
later referred to as Gitelman syndrome (GS), began to be
characterized when measurements of magnesium levels in
blood and calcium levels in urine of young adult patients were
introduced in the diagnostic workup of SLTs [7]. Hypomagne-
semia can now be interpreted retrospectively as the cause of
tetany, carpopedal spasms, and a positive Chvostek’s sign,
already mentioned in Bartter’s index patients [6].

In contrast, the full-blown loop variant of BS was fatal
until the mid-1980s with progress of neonatology. Before
then, only incomplete phenotypes may have survived and/
or could have been studied [8]. The detailed description of

the complete clinical phenotype of a loop disorder stems from
the pediatricians and neonatologists Ohlssen and Seyberth [9,
10], who highlighted the antenatal onset of the disease.
Seyberth instituted the life-saving treatment with indometh-
acin as soon as the fatal role of dramatically elevated
prostaglandin E2 (PGE2) formation was discovered in the
sequelae of loop dysfunction. Thereafter, the term hyper-
prostaglandin E syndrome (HPS) was introduced [10, 11].

In the past 15 years, mutations in seven or more different
genes have been identified as being responsible for SLTs.
Besides careful clinical observations and innovative phys-
iological concepts, molecular genetics and pharmacology
have made this progress possible. Syndromic and genetic
terminology, genes, affected gene products, and key
features of clinical presentation are displayed in Table 1.
This traditional terminology is based on the two major
clinical syndromes: BS and GS, as well as on the
chronology of their first genetic characterization. In
addition, a pharmacology-based classification and pharma-
cotype terminology for SLTs were developed and intro-
duced in 2008 [12]. This newer terminology is presented
together with the affected tubular segments and the
pharmacological classification in relation to the key features

Fig. 1 Salute reabsorption in the thick ascending limb (TAL) of
Henle`s loop, the distal convoluted tubule (DCT), and the aldosterone-
sensitive distal nephron (ASDN). In the TAL (a), sodium chloride is
reabsorbed by furosemide-sensitive sodium–potassium-2-chloride co-
transporter (NKCC2) together with potassium, which has to be
recycled via the renal outer medullary potassium channel, Kir 1.1
(ROMK) into the tubular lumen. Calcium and magnesium are
reabsorbed passively via the paracellular pathway driven by lumen-
positive transepithelial potential. In the DCT (b), salt reabsorption
occurs via thiazide-sensitive sodium cotransporter (NCCT). As in the

TAL, sodium is extruded basolaterally by sodium–potassium–adeno-
sine triphosphatase (Na-K-ATPase), and chloride leaves the cell
through chloride channels (ClC). Reabsorption of magnesium and
calcium in the DCT is active and transcellular in nature, consisting of
uptake through selective ion channels (TRPM6 and TRPV5, respec-
tively). In the ASDN (c), ROMK potassium channels – in addition to
their role in the TAL – are essential for potassium ion secretion in
exchange for the electrogenic reabsorption of sodium via amiloride-
sensitive epithelial sodium channels (ENaC) under the influence of
aldosterone
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of clinical presentation in Table 2. This classification is
based on three major subgroups of inherited SLTs. One is
the thiazide-like DCT disorders, traditionally referred to as
GS and classic BS or BS type III. A second is the more
severe polyuric and furosemide-like loop disorders, tradi-
tionally referred to as antenatal BS/HPS or BS types I and
II. The third is the combination of both tubular disorders,

traditionally referred to as antenatal BS/HPS with sensori-
neural deafness (BSND), or BS type IV.

One of the advantages of the pharmacology-based
classification system is that young medical students appear
to be familiar with the mode of action and adverse reactions
of the classical diuretics, such as loop diuretics, thiazides,
and potassium-sparing diuretics [13–16]. Moreover, the

Table 2 New terminology and pharmacological classification

Type of disorder
(gene product affected)

Affected tubular
segment

Pharmacotype Polyhydramnios Key features of clinical
presentationa

Loop disorders

L1 type (NKCC2) TAL Furosemide type +++ Polyuria, hypercalciuria, NC

L2 type (ROMK) TAL/CCDb Furosemide-amiloride type +++ Polyuria, hypercalciuria, NC, transient
hyperkalemia,

DCT disorders

DC1 type (NCCT) DCT Thiazide type – Hypomagnesemia, hypocalciuria, growth
retardation

DC2 type (ClC-Kb) DCT/TALb Thiazide-furosemide type + Hypochloremia, mild hypomagnesemia, FTT
in infancy

DC3 type (Kir 4.1) DCT Thiazide type – Hypomagnesemia, hypocalciuria, EAST
sydrome

Combined disorders

L-DC1 type (ClC-Ka + b) TAL + DCT Furosemide-thiazide type +++ Polyuria, hypochloremia, mild
hypomagnesemia, SND, CRF

L-DC2 type (barttin) TAL + DCT Furosemide-thiazide type +++ Polyuria, hypochloremia, mild
hypomagnesemia, SND, CRF

TAL thick ascending limb of Henle`s loop, DCT distal convoluted tubule, CCD cortical collecting duct, NC medullary nephrocalcinosis, FTT failure to
thrive, EAST syndrome, epilepsy, ataxia, sensorineural deafness, and tubulopathy, SND sensorineural deafness, CRF chronic renal failure
a Hypochloremic alkalosis and hypokalemia is an ubiquitary finding and is therefore not mentioned separately
b This affected tubular segment is not of equal importance.

Table 1 Syndromic and genetic terminology

Syndromic terminology Genetic terminology Gene Gene product affected Key features of clinical presentationa

Bartter syndrome

aBS/HPS BS type I SLC12A1 NKCC2 Polyhydram., polyuria, hypercalciuria, NC

aBS/HPS BS type II KCNJ1 ROMK Polyhydram., polyuria, hypercalciuria, NC,
transient hyperkalemia

cBS BS type II CLCNKB CIC-Kb Hypochlor., mild hypomagnesemia, FTT in infancy

BSND BS type IV BSND Barttin Polyhydram., polyuria, hypochlor.,
hypomagnesemia, SND, CRF

ADH BS type V CASR CaSR Hypocalcemia, hypomagnesemia, (polyuria)

BSND CLCNKA + B CIC-Ka + b Polyhydram., polyuria, hypochlor.,
hypomagnesemia, SND, CRF

Gitelman syndrome GS SLC12A3 NCCT Hypomagnesemia, hypocalcuria, growth retardation

EAST syndrome EAST syndrome KCNJ10 Kir 4.1 Hypomagnesemia, hypocalcuria, EAST syndrome

BS Bartter syndrome, aBS antenatal Bartter syndrome, HPS hyperprostaglandin E syndrome, cBS classic Bartter syndrome, BSND Bartter
syndrome with sensorineural deafness, ADH autosomal dominant hypocalcemia, GS Gitelman syndrome, EAST syndrome, epilepsy, ataxie,
sensorineural deafness, and tubulopathy, polyhydram polyhydramnios, NC medullary nephrocalcinosis, hypochlor. hypochloremia, FTT failure to
thrive, NKCC sodium–potassium-2-chloride co-transporter SND sensorineural deafness, CRF chronic renal failure. ROMK renal outer medullary
potassium channel, Kir 1.1, CaSR calcium-sensing receptor, CIC chloride channels, NCCT sodium chloride cotransporter
a Hypochloremic alkalosis and hypokalemia is an ubiquitary finding and is therefore not mentioned separately
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pharmacology-based classification might not only be
helpful in finding the most leading diagnostic criteria but
might provide some useful therapeutic concepts. It is also
hoped that this classification will cope with and be adapted
accordingly to newer discoveries, such as entirely new
functional proteins, functional consequences of loss-of-
function mutation of critical gene products, or additional
function of an affected gene product somewhere else in the
nephron or in the body. Thus, this classification system and
corresponding terminology based on pharmacology as well
as anatomy and physiology is applied in addition to the
traditional terminology throughout this review.

Distal nephron disorders

Loop disorders: a major subgroup of inherited SLTs

Clinical presentation is governed by global dysfunction of the
TAL, the major part of the nephron’s urine concentration
machinery, due its water impermeability and unique sodium
chloride reabsorption abilities. Failures here lead inevitably to
marked polyuria with all its consequences, especially in
infancy and even in utero. Thus, the very first pathognomonic
finding of a loop disorder is the development of a severe
maternal polyhydramnios within the second trimenon due to
fetal saluretic polyuria. The excessive amniotic fluid volume
almost always leads to premature delivery in the first part of
the third trimester of pregnancy.

Bartter syndrome type I, or pure furosemide type (L1 type),
also referred to as antenatal Bartter syndrome,
hyperprostaglandin E syndrome

The key symptoms besides life-threatening polyuria shortly
after birth include isosthenuria or even hyposthenuria, hyper-
prostaglandinuria, and hypokalemic alkalosis [17]. Within the
first weeks of life, nearly all patients develop medullary
nephrocalcinosis in parallel with persistently high urinary
calcium excretion. This phenotype mimics well the pharma-
cological profile of furosemide treatment in preterm infants
[18]. As such, it was fitting that Lifton’s group identified
mutations in the SLC12A1 gene coding for the furosemide
target molecule, the furosemide-sensitive NKCC2 [19].
Thus, in pharmacology-based terminology, this tubulopathy
is called the pure furosemide type of loop disorder [12, 15].

Bartter syndrome type II, or the mixed furosemide-amiloride
type (L2 type), also referred to as antenatal Bartter syndrome,
hyperprostaglandin E syndrome

In addition to NKCC2 mutations, ROMK defects are
responsible for a typical loop disorder [20, 21]. The

difference between these two disorders is a transient
hyperkalemia within the first days of life of patients with
this mixed type of loop disorder. This curious phenomenon
reflects the contribution of ROMK to distal net potassium
excretion [17]. Later, other CCD potassium channels
apparently compensate, and patients become hypokalemic
although significantly less severe compared with other
patients with SLTs. This phenotypical characteristic
matches well results observed with the popular diuretic
regimen combining the strong saluretic and kaliuretic
furosemide with the potassium-sparing amiloride.

DCT disorders, a major subgroup of inherited SLTs

Disorders of the DCT markedly differ from the above-
described loop disorders in terms of age of onset, severity
of clinical manifestations, absence of a major urinary
concentrating defect, and associated electrolyte abnorma-
lities. Tubular disorders affecting the DCT share with loop
disorders the features of renin–angiotensin–aldosterone
system (RAAS) activation and hypokalemia but exhibit
hypomagnesemia and reduced urinary calcium excretions,
as observed during long-term treatment with thiazides [22].
In contrast to the transepithelial salt transport, the etiology
of the coexistence of hypomagnesemia and hypocalciuria is
still not completely understood (see below). Whereas
sodium enters the DCT cell together with chloride by the
action of the thiazide-sensitive NCCT cotransporter, both
ions leave the cell separately via Na-K-ATPase and ion
channels (ClC-Kb), respectively (Fig. 1b). Disorders of salt
handling in the DCT involve disturbances in both apical
sodium and chloride uptake as well as basolateral extrusion.

DCT disorder with apical uptake defect

Gitelman syndrome, or the pure thiazide type (DC1 type),
also referred to as familial hypokalemia–hypomagnesemia)

In its first report on tubular salt-loosing disorders in 1996,
Lifton’s group elucidated the underlying genetic defect in a
hypokalemic, hypomagnesemic variant of SLTs [23].
Inactivating mutations in the SLC12A3 gene coding for
apically expressed thiazide-sensitive NCCT caused this
DCT disorder. Initially, it was considered a relatively
benign variant of salt-wasting disorders during infancy
and early childhood, which usually becomes symptomatic
at school age and finally during adolescence or adulthood with
mild symptoms, such as muscular weakness, fatigue, salt
craving, or signs of increased neuromuscular excitability such
as cramps or tetany. Young patients are often diagnosed
accidentally during a diagnostic workup because of growth
retardation, constipation, or enuresis, but also by family
history [24]. However, over time and in a subgroup of
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young male patients, the thiazide type of tubular disorder is
not so benign [25–27]. Patients may suffer from significant
reduction in quality of life, more or less related to more
severe sequelae of the primary disorder. These include
hypokalemic rhabdomyolysis, seizures, cardiac arrhythmias,
or chondrocalcinosis. For example, chondrocalcinosis, which
affects mainly the knees, elbows, and shoulders and might
lead to consultation with a rheumatologist [28], is thought to
be the result of chronic hypomagnesemia [27].

Based on the large number of patients with >140
mutations of the NCCT gene and the already available
long-term experience, the natural history of GS or the pure
thiazide-type disorder is highly heterogeneous in terms of
age of clinical diagnosis and the nature and severity of
biochemical abnormalities and severity of clinical manifes-
tation, even when a common underlying mutation is present
[26, 27, 29]. Moreover, hypocalciuria and hypomagnesemia
might change during the life cycle of a given patient,
reflecting environmental changes or compensatory mecha-
nisms. Hypomagnesemia and hypocalciuria were considered
pathognomonic for the NCCT defect. However, this labora-
tory constellation is also observed in other disorders primarily
affecting active transcellular magnesium reabsorption or
active transcellular salt reabsorption in the DCT (see below).
Therefore, the combination of hypomagnesemia with hypo-
calciuria might be considered a DCT signature rather than
being NCCT or GS specific.

DCT disorders with basolateral extrusion defect

Besides the NCCT defect, two additional defects have been
identified as causes for a DCT disorder: the mixed thiazide–
furosemide and the mixed kidney–brain type; Both are
based on a basolateral extrusion defect.

Bartter syndrome type III or the mixed thiazide–furosemide
type (DC2 type), also referred to as classic Bartter
syndrome

Initially, when Lifton’s group identified mutations in the
chloride channel gene CLCNKB as another cause of SLT, it
was considered that chloride reabsorption in the loop is
primarily and exclusively impaired [30]. However, later, the
entire spectrum of the clinical presentation with a strong
DCT signature became apparent, leading to the term classic
BS [31]. This term was chosen to keep this disorder clearly
apart from the more severe and life-threatening loop
disorders, the antenatal BS/HPS. The mixed thiazide-
furosemide-like clinical presentation of a tubular disorder
with ClC-Kb-defect is most likely explained by differences
in the expression of the chloride channels ClC-Ka and ClC-
Kb in the distal nephron. Expression of both chloride
channels occurs in the TAL with an exclusive expression of

ClC-Ka in the thin ascending limb and predominant
expression of ClC-Kb in more distal nephron segments, i.e.,
the DCT. Thus, there is a potential of compensation for an
isolated ClC-Kb defect in the TAL by ClC-Ka, whereas no
such option exists in the DCT [32, 33]. That is why in contrast
to the traditional terminology, BS type III is primarily
regarded as a DCT disorder in the new terminology.

The phenotype of this mixed thiazide type of DCT disorder
can be described as follows [17, 24, 31, 34]: After an
uneventful neonatal period, patients usually present with
failure to thrive. At first presentation, electrolyte derange-
ments are usually pronounced, because renal salt wasting
progresses slowly and is virtually not accompanied by evident
polyuria, which delays medical consultation. Laboratory
examination can reveal extremely low plasma chloride
concentrations associated with hyponatremia and severe
hypokalemic alkalosis. Up to one third of patients might be
affected with prenatal polyhydramnios that, however, is less
pronounced and rarely requires amniocentesis or leads to
extreme prematurity [17, 31]. Accordingly, symptoms consis-
tent with dysfunction of the TAL, such as hyposthenuric or
isosthenuric polyuria or hypercalciuria, are rare findings. Few
patients develop medullary nephrocalcinosis. Clearly, the
majority of patients share symptoms with patients with a
pure thiazide type of disorder, such as postnatal manifestation,
a largely preserved renal concentrating capacity, low plasma
levels of magnesium, and diuretic insensitivity to thiazide
administration [17, 24, 31, 35]. This makes it quite difficult to
differentiate between these two disorders: BS type III and GS.
Unfortunately, genetic findings are not able to explain the
entire spectrum of phenotypic variability of this mixed type of
tubular disorder [29, 31, 36, 37]. The phenotypic heteroge-
neity might also reflect an individual variance in distribution
of ClC-Kb in the distal nephron or a potential for activating
alternative routes of basolateral chloride secretion.

EAST/SeSAME syndrome, or mixed kidney–brain type
(DC3 type)

Very recently, two independent groups described a complex
syndrome combining epilepsy, ataxia, mental retardation,
sensorineural deafness, and renal salt wasting for which
they introduced the acronyms EAST, or SeSAME [38, 39].
Besides RAAS stimulation and hypokalemic alkalosis, the
renal phenotype includes a largely preserved urinary
concentrating ability as well as hypomagnesemia and
hypocalciuria resembling the above-mentioned DCT signa-
ture. Autosomal-recessive EAST/SeSAME syndrome was
found to be caused by loss-of-function mutations in
KCNJ10, coding for Kir4.1, a member of the inwardly
rectifying potassium channel family. Kir4.1 expression was
demonstrated in glial cells in several parts of the brain,
including the spinal cord, and in the stria vascularis of the
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inner ear, explaining the observed central nervous pheno-
type and deafness in affected patients. In kidney, Kir4.1 is
expressed in DCT, connecting tubule (CT), and CCD [40]. In
these segments, Kir4.1 localizes to the basolateral membrane
and is supposed to function together with Na-K-ATPase and
allows for a recycling of potassium ions entering the tubular
cells and counters movement of the extruded sodium [39]. This
is another example of a DCT disorder that demonstrates a
similar clinical presentation concerning the renal phenotype
despite a different gene defect. This phenomenon can be
explained by ion transport mechanisms that are tightly
coupled to each other, meaning that loss-of-function mutations
affecting one element of active transepithelial transport
potentially lead to the complete breakdown of salt reabsorp-
tion in the affected epithelial cells in the DCT.

Combined disorders, a combination of both major
subgroups of inherited SLTs

Bartter syndrome type IV, or furosemide–thiazide types
with ear involvement (L-DC1 and L-DC2 type),
also referred to as antenatal Bartter syndrome
or hyperprostaglandin E with sensorineural deafness

A combined defect of salt reabsorption in the TAL and
DCT leads to the clinically most severe variant of tubular
salt-wasting disorders, which fortunately is much less
common than any other SLT. It is caused by a defect in
chloride transport both in the TAL and DCT by disruption
of the function of basolateral ClC-Ka and ClC-Kb. After
the initial description of a defect in barttin, an essential
subunit of both chloride channels [41], genetic heterogene-
ity was demonstrated by the occurrence of a digenic defect
of both ClC-Ka and ClC-Kb [32]. The combined impair-
ment of basolateral chloride transport in the TAL and DCT
mimics the concerted action of furosemide and thiazides. In
addition, defective chloride transport via ClC-Ka and ClC-
Kb also leads to sensorineural deafness.

Typically, these disorders manifest prenatally, with the
development of a maternal polyhydramnios due to fetal
polyuria, beginning close to the end of the second trimester
of pregnancy. As in all loop disorders, polyhydramnios
accounts for preterm labor and extreme prematurity.
Postnatally, patients exhibit excessive salt and water losses
and are at high risk of hypovolemic hypotension or even
shock. Plasma chloride decreases to rather low levels,
similar to the SLT with ClC-Kb defect. Polyuria and
isosthenuria or hyposthenuria are present, as in other loop
disorders. However, response to indomethacin treatment,
which has been shown to be highly effective in NKCC2
and ROMK defects, is – for unknown reasons – unsatis-
factory, necessitating extensive fluid and electrolyte thera-
py. In contrast to patients with NKCC2 and ROMK defects,

patients with these combined disorders (BS type IV) exhibit
only transitory hypercalciuria but commonly proceed to
progressive renal failure, although medullary nephrocalci-
nosis is usually absent [24, 42].

Diagnostic considerations

Possible misdiagnoses

As the first step when considering the diagnosis of an SLT-
like clinical presentation, nonrenal diseases such as cystic
fibrosis, chloride diarrhea, chronic vomiting, and laxative
abuse need to be excluded. When a renal tubular disorder is
more closely considered, the not so uncommon misdiag-
noses – such as nephrogenic diabetes insipidus for any loop
disorder or pseudohypoaldosteronism for the mixed furo-
semide–amiloride subtype (BS type II) – have to be
excluded. In nephrogenic diabetes insipidus, pure renal
water wastage is not associated with the development of
polyhydramnios and hyponatremia [43], and in pseudohy-
poaldosteronism, hyperreninemic hyperaldosteronism is
associated with persistent hyperkalemic acidosis, as op-
posed to the development of hypokalemic alkalosis in
ROMK defects [17, 44, 45].

Differential diagnosis

As shown in Table 2, there are robust signs and
symptoms to differentiate between loop and DCT
disorders [17, 24]. Excessive maternal polyhydramnios
(3–15 l) and often with the need for amniocentesis,
massive polyuria in early childhood (>15 ml/kg/day) with
a urine osmolality <300 mOsmol/kg and persistent hyper-
calciuria (>8 mg/kg/day) with nephrocalcinosis are all indic-
ative for loop disorders. In contrast, hypocalciuria (<2 mg/kg/
day) and a maximal urine osmolality clearly >400 mOsmol/kg
associatedwith neuromuscular irritability and tetany in patients
not much younger than school-age children strongly suggest a
DCT disorder. However, the combined furosemide–thiazide
type of tubular disorder (BS type IV) with ear involvement is
an exception. Despite reinforced diuresis, the net effect of a
hypercalciuric loop defect combined with a hypocalciuric
DCT defect will ultimately result in normocalciuria with no
parenchymal calcification of the renal medulla. There are also
some deviations from this diagnostic rule as a result of residual
function of the mutated channels or transporters, such as a
partial defect of NKCC2, which has been associated with a
late-onset manifestation beyond childhood [46]. Moreover, as
mentioned before, a minority of patients with ClC-Kb defect
have some features of a rudimentary loop disorder [17]. In
particular, African Americans might have a higher tendency
to this mixed kind of clinical presentation [47].
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For the accurate diagnosis of SLTs under routine clinical
conditions, fractional clearance studies during hypotonic
saline diuresis to assess distal chloride reabsorption [48] or
diuretic response tests [49] in patients with suspected SLT-
like disease are not very helpful or may even be sometimes
dangerous. In the first case, induced hypotonic diuresis may
cause a further drop in serum potassium levels, and in the
second case, the additional pharmacological blockade of
compensatory mechanisms will cause almost total failure of
salt reabsorption in the distal tubule [50]. Most valuable for
differential diagnosis is the patient’s medical history. Severe
prenatal manifestation is the hallmark for all loop disorders.
Transient hyperkalemia is a special feature of the mixed
furosemide–amiloride type (BS type II or L2 type), and
sensorineural deafness characterizes combined tubular dis-
orders (BS type IV or L-DC1 and L-DC2 types). Also, the
mixed kidney–brain type of the DCT disorders (EAST
syndrome or DC3 type) with the complex neurological
phenotype should allow a straightforward diagnosis. How-
ever, because of the great variability of the clinical
presentation and the significant overlap between the pure
thiazide type (GS or DC1 type) and the mixed thiazide–
furosemide type (BS type III or DC2 type), the correct
diagnosis of these DCT disorders can often be made only
by genetic analysis.

Secondary SLTs

There is also a variety of unrelated disorders associated
with secondary SLTs. Some are inherited; others are
acquired dysfunctions. Often, the exact pathological mech-
anism of salt wasting is not well understood and is
occasionally overlooked as a concomitant feature of the
primary disease. Autosomal dominant hypocalcemia is
caused by gain-of-function mutations in the calcium-
sensing receptor (CaSR), which is highly expressed at the
basolateral membrane of the TAL [51, 52]. This receptor
negatively regulates the passive reabsorption of divalent
cations. Activation of the CaSR by interstitial concentra-
tions of calcium and magnesium provokes inhibition of
active, transcellular salt reabsorption and thereby decreases
transepithelial lumen-positive potential and paracellular
divalent cation reabsorption in the TAL [53, 54]. Thus,
CaSR activation might have the potential to cause a certain
degree of loop dysfunction. That is why sometimes this
disorder is also referred to as BS type V (see Table 1).
However, similar interactions and mechanisms might also
exist in other disorders that can be associated with
dysfunction of salt transport in the distal tubule, such as
Sjögren’s syndrome [55], Dent’s disease [56], sarcoidosis
[57], Kearns–Sayre syndrome [58], and cystinosis [59].
Finally, several drugs may cause SLT-like or Bartter-like
adverse reactions, such as aminoglycosides, prostaglandins,

and cytotoxic drugs (e.g., cisplatin) [60–62]. However, the
most frequent drugs involved are diuretics, especially when
adolescents chronologically abuse them.

Therapeutic options

Supplementation

Usually, lifelong supplementation of salt and water is
essential for all patients with SLTs. Potassium-rich diet or
direct potassium supplementation needs to be considered,
particularly in patients with muscular weakness, cardiac
arrhythmias, and/or constipation. This might not be the case
in patients with a loop disorder of the mixed furosemide–
amiloride type (BS type II) if adequately treated with
indomethacin (see below). For patients with hypomagnese-
mia associated with tetany, cramps, paresthesias, and joint
and muscle pain, magnesium supplementation is always
warranted [27]. However, this is a major therapeutic
challenge because of the limited intestinal tolerance for
oral magnesium administration [17].

Pharmacotherapy

For quite some time, therapeutic interventions might have
been too exclusively focused on potassium levels following
the hypothesis that hypokalemia is the preceding event for
increased prostaglandin production in patients with SLTs
[63]. Thus, potassium supplementation in combination with
the aldosterone antagonist spironolactone and/or potassium-
sparing diuretics has been recommended as the first
therapeutic option for patients with SLTs [64]. Probably
the most convincing clinical evidence that the sequence of
events is just the other way round was demonstrated by the
hyperprostaglandinuric, hyperkalemic, preterm neonates
with a ROMK defect in the first weeks of life [17]. Today,
we know more about the role of prostaglandins in the
underlying pathological mechanism, particularly of loop
disorders. The pivotal role of renal PGE2 in the pathogen-
esis of loop disorders is presented briefly (Fig. 2). To sense
tubular chloride concentration, MD cells take advantage of
essentially the same repertoire of transport proteins as
found in the salt-reabsorbing TAL cells. MD binding
through genetically disrupted apical salt (chloride) entry –
for example, through defective NKCC2 – incorrectly
signals low tubular salt concentration with resultant
counterregulation by interfering with tubuloglomerular
feedback and the attendant disinhibition of glomerular
filtration [1–3, 65]. The overwhelming salt load caused by
this prostaglandin-mediated glomerular overfiltration might
constitute one of the most important mechanisms underly-
ing the severe salt and water wasting in loop disorders.
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Moreover, the high tubular salt load is a major stimulus for
even more COX-2-mediated PGE2 production, which
causes an additional direct inhibition of tubular salt and
water reabsorption [24, 65, 66]. The actual trigger for this
PGE2 overproduction at the tubular site might also be the
transcellular chloride concentration gradient and some
additional stimuli, such as tubular shear stress along the
entire distal nephron [67]. This concept might explain why
salt and water supplementation alone without concomitant
inhibition of renal prostaglandin synthesis does not improve
but even aggravates salt and water wasting of a loop
disorder. In this situation, a vicious cycle is started.

Consequently, in loop disorders, the supplementation
of wasted salt and water ought to be accompanied by
pharmacological suppression of elevated PGE2 synthesis
in the kidney [67]. As a chronic treatment, indomethacin
appears to be one of the most appropriate therapeutic
options. The effect of indomethacin is particularly
pronounced in patients with a mixed furosemide–amilo-
ride type of loop disorder (BS type II). After titration of
the least toxic but still efficacious dose (sometimes
<1 mg/kg body weight/day), this therapy appears to be
convenient, as no additional potassium supplementation
or RAAS blockers are needed in the majority of patients
[17]. Besides the beneficial effects on renal salt and water

wasting, effective indomethacin treatment significantly
improves failure to thrive and growth, particularly in the
first years of treatment. This effect is observed in patients
with loop disorders as well as in those with DCT
disorders [68, 69]. DCT disorders are not always
associated with markedly elevated renal PGE2 synthesis
[17, 24]. This is especially the case in adult patients [70].
This might be one reason that PGE synthesis inhibitors
have not been tested as frequently in DCT disorders
compared with those with loop disorders. There is, in fact,
a great need for randomized, well-controlled clinical trials
with the different pharmacotherapeutic options and
combinations in patients with SLTs, especially with
DCT disorders [71].

Only in the case of persistent hypokalemia (plasma
potassium <3.0 mmol/l) that occurs despite adequate and
tolerated inhibition of prostaglandin synthesis and salt and
potassium supplementation, for symptomatic antihypokale-
mic therapy, one might consider the use of drugs that
interfere with the RAAS, such as angiotensin-converting
enzyme inhibitors (ACEIs), angiotensin receptor blockers
(ARBs), or direct renin inhibitors [72–74]. However, close
monitoring of renal function and blood pressure is
absolutely warranted, particularly as a therapeutic agent is
phased in. This add-on therapy might have an additional

Fig. 2 Simplified scheme to explain how prostaglandin E2 (PGE2)
plays a pivotal role in the pathogenesis of salt and water wasting in
loop disorders. The genetic knockout of active transcellular transport
impairs salt (chloride) detection by low intracellular salt content and
cell shrinkage in the macula densa (MD), with the consequence of
cyclooxygenase-2 (COX-2) and prostaglandin E2-synthase (PGES)
activation. Overproduced PGE2 interferes with tubuloglomerular
feedback (TGF) through disinhibition of glomerular filtration, which

increases glomerular filtration rate (GFR). In parallel, PGE2 inhibits
antidiuretic hormone (ADH) action on water reabsorption at the level of
the collecting duct (CD) and activates the renin–angiotensin–aldosterone
system (RAAS) in an attempt to increase salt reabsorption. However,
PGE2 antagonizes this by inhibiting tubular salt reabsorption in addition
to the genetic defect directly at the tubular site and thereby actually
aggravates renal salt wasting. cTAL cortical thick ascending limb of
Henle’s loop, mTAL medullary thick ascending limb of Henle's loop
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beneficial effect on proteinuria, which becomes a growing
problem in the long run in patients with SLTs [75, 76].
However, it should be mentioned again that no such well-
defined clinical trials have been conducted. Moreover, the
off-label use of all of these antihypokalemic and antipro-
teinuric orphan medicines needs to be considered carefully.

At the end of this discussion of various aspects of the
pharmacotherapeutic interventions in patients with SLT, the
attempt to treat either hypokalemia or hypercalciuria with a
potassium- or calcium-sparing diuretic ought to be men-
tioned. This symptomatic and in part paradoxical diuretic
treatment is harmful to patients with diuretic-like salt and
water wasting tubulopathies [77–79]. In both cases, this
pharmacological approach attenuates or even abolishes
essential compensatory mechanisms in segments of the
distal nephron that are not genetically affected. In this
situation, volume contraction appears to be worsened and,
in the case of a potassium-sparing diuretic, a sudden shift
from hypokalemia to hyperkalemia might occur, particular-
ly when renal function is critically reduced in a hypovole-
mic state or during additional extrarenal fluid losses (e.g.,
diarrhea and vomiting).

Prognosis

In contrast to loop disorders, which are most severe during
the perinatal period and in early infancy with improving
stability later in life, DCT disorders or the Gitelman-like
syndromes have the tendency of aggravation during
adulthood [25]. That means in patients with DCT disorders
that the therapeutic efforts might have to be intensified over
time, whereas in patients with loop disorders (BS I and II),
treatment can be tapered down. This was observed at our
institution in patients with loop disorders when medications
were withdrawn for a few days under controlled conditions
in intervals of 3–4 years [10, 80, 81]. These withdrawal
tests have the additional advantage that one may identify
patients with a rather mild loop disorder [46] or realize that
one might have been dealing with a transient loop
dysfunction during the perinatal period [82]. Some reports
about long-term follow-ups from various single groups and
centers with experiences in managing patients with SLT are
available [25, 75, 76, 81]. Unfortunately, until now, larger
cohorts of patients from various centers and institutions
have not been enrolled in international registries. Such
registries are essential for making clearer prognostic
statements. However, the following risks and possible
adverse drug reactions during the patient’s entire life
span are listed:

1. Prolonged use of prostaglandin synthesis inhibitors can
be associated with increased gastrointestinal intolerance

or even toxicity [75, 83, 84]. Use of more selective
COX-2 inhibitors has been evaluated as a better option
[85–87]. However, administration of these com-
pounds seems to increase cardiovascular risk [88].
For the present time, indomethacin, which appears to
be most efficacious and reasonably well tolerated by
children, remains the drug of choice. Sometimes, the
combined use of medicines that control gastric acidity
and the integrity of gastric mucosa, such as prosta-
glandin analogues or proton-pump inhibitors, might
be indicated.

2. There is always a certain risk of secondary renal failure
during chronic volume contraction, especially in
patients with polyuric SLTs and noncompliance
concerning the medication [75]. Fortunately, renal
function is usually protected from irreversible renal
damage if close patient monitoring during long-term
indomethacin treatment is provided [81]. However, the
special natural history and prognosis of combined loop
and DCT disorders (BS type IV), which are prone to
renal failure, needs to be considered [42].

3. Cardiac arrhythmias and QT prolongation induced by
hypokalemia and hypomagnesemia might put patients
with DCT disorders (GS and BS type III) at risk of
sudden cardiac death [89–91]. For this reason, several
commonly used medicines that prolong the QT
interval, such as macrolides, antihistamines, some
antitussives, antimycotics, psychotropics, and β2-
agonists, should be avoided. Compilations of com-
monly used drugs with QT-prolonging effect are
available [92].

4. Growth retardation is not uncommon in patients with
DCT disorders [75, 93]. Delayed growth appears to be
a quite common observation in a subgroup of severely
affected male patients with the pure thiazide type of
DCT disorder (GS) [26].

Questions

(Answers appear following the reference list.)

1. The pregnancy of a 28-year-old woman with one
previous miscarriage is complicated by idiopathic
polyhydramnios, which was first recognized by
routine ultrasound at the end of the second trimester.
After therapeutic amniocentesis (estimated amniotic
fluid volume of 10 l) and rupture of membranes at
30 weeks of gestation, an acute Caesarean section
was performed. The delivered male infant was
appropriate for gestational age and showed an
uneventful postnatal adaptation, except for a mild
respiratory distress syndrome requiring a positive
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end-expiratory pressure device. However, a few days
later, he developed hyponatremia, hyperkalemia,
hyposthenuria, hypercalciuria, and a weight loss from
birthweight by >15%.

The diagnosis most likely is:

(a) Nephrogenic diabetes insipidus
(b) Loop disorder with NKCC2 defect (BS type 1)
(c) Loop disorder with ROMK defect (BS type II)
(d) Combined loop and DCT disorder with barttin

defect (BS type IV)
(e) Combined loop and DCT disorder with a defect in

ClC-Ka and ClC-Kb

2. What is the most appropriate pharmacotherapeutic
intervention in a patient with polyuric and hypercalciuric
salt-losing tubulopathy associatedwith hyperaldosteronism?

(a) Potassium-sparing diuretics
(b) Calcium-sparing diuretics
(c) COX-2 inhibitors
(d) Prostaglandin synthesis inhibitors
(e) ACE inhibitors and/or AR blockers

3. Which patient with a salt-losing tubulopathy is most likely
at risk to develop end-stage renal failure later in life?

(a) Combined loop and DCT disorder with barttin
defect (BS type IV)

(b) Loop disorder with ROMK defect (BS type II)
(c) DCT disorder with ClC-Kb defect (BS type III)
(d) DCT disorder with NCCT defect (GS)
(e) Loop disorder with NKCC2 defect (BS type I)

4. Which special subtype of salt-losing tubulopathy is
least likely to be associated with chronic hypercalciuria
and nephrocalcinosis?

(a) NKCC2 defect (BS type I)
(b) ClC-Kb defect (BS type III)
(c) ROMK defect (BS type II)
(d) Barttin defect (BS type IV)

5. What is the most convenient way to differentiate
between renal and extrarenal salt losses?

(a) Plasma electrolyte measurement
(b) Urine osmolality
(c) Urinary sodium and/or chloride levels
(d) Sweat chloride test

6. What is the most unlikely complication or sequelae of a
DCT disorder with an apical uptake defect (GS)?

(a) Hypokalemic rhabdomyolysis
(b) Nephrolithiasis

(c) Growth retardation
(d) Cardiac arrhythmias
(e) Chondrocalcinosis
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