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Objective:	To	describe	the	pathophysiology	associated	with	mul-
tiple	organ	dysfunction	syndrome	in	children.
Data Sources:	Literature	review,	research	data,	and	expert	opinion.
Study Selection:	Not	applicable.
Data Extraction:	Moderated	by	an	experienced	expert	from	the	field,	
pathophysiologic	processes	associated	with	multiple	organ	dysfunc-
tion	syndrome	in	children	were	described,	discussed,	and	debated	
with	a	focus	on	identifying	knowledge	gaps	and	research	priorities.
Data Synthesis:	Summary	of	presentations	and	discussion	sup-
ported	and	supplemented	by	relevant	literature.
Conclusions:	Experiment	modeling	suggests	that	persistent	macro-
phage	activation	may	be	a	pathophysiologic	basis	for	multiple	organ	
dysfunction	 syndrome.	 Children	 with	 multiple	 organ	 dysfunction	
syndrome	have	1)	reduced	cytochrome	P450	metabolism	inversely	

proportional	to	inflammation;	2)	increased	circulating	damage-asso-
ciated	molecular	pattern	molecules	from	injured	tissues;	3)	increased	
circulating	pathogen-associated	molecular	pattern	molecules	 from	
infection	 or	 endogenous	microbiome;	 and	 4)	 cytokine-driven	 epi-
thelial,	 endothelial,	 mitochondrial,	 and	 immune	 cell	 dysfunction.	
Cytochrome	P450s	metabolize	endogenous	compounds	and	xeno-
biotics,	many	of	which	ameliorate	 inflammation,	whereas	damage-
associated	molecular	pattern	molecules	and	pathogen-associated	
molecular	pattern	molecules	alone	and	together	amplify	the	cytokine	
production	 leading	 to	 the	 inflammatory	multiple	organ	dysfunction	
syndrome	response.	Genetic	and	environmental	factors	can	impede	
inflammation	resolution	in	children	with	a	spectrum	of	multiple	organ	
dysfunction	 syndrome	 pathobiology	 phenotypes.	 Thrombocytope-
nia-associated	multiple	organ	dysfunction	syndrome	patients	have	
extensive	 endothelial	 activation	 and	 thrombotic	 microangiopathy	
with	 associated	 oligogenic	 deficiencies	 in	 inhibitory	 complement	
and	 a	 disintegrin	 and	 metalloproteinase	 with	 a	 thrombospondin	
type	 1	 motif,	 member	 13.	 Sequential	 multiple	 organ	 dysfunction	
syndrome	patients	have	soluble	Fas	 ligand-Fas–mediated	hepatic	
failure	with	associated	oligogenic	deficiencies	in	perforin	and	gran-
zyme	signaling.	Immunoparalysis-associated	multiple	organ	dysfunc-
tion	syndrome	patients	have	impaired	ability	to	resolve	infection	and	
have	 associated	 environmental	 causes	 of	 lymphocyte	 apoptosis.	
These	 inflammation	 phenotypes	 can	 lead	 to	 macrophage	 activa-
tion	syndrome.	Resolution	of	multiple	organ	dysfunction	syndrome	
requires	elimination	of	the	source	of	 inflammation.	Full	recovery	of	
organ	functions	is	noted	6–18	weeks	later	when	epithelial,	endothe-
lial,	mitochondrial,	and	immune	cell	regeneration	and	reprogramming	
is	completed.	(Pediatr Crit Care Med	2017;	18:S32–S45)
Key Words:	 cytochrome	 P450	 metabolism;	 immunoparalysis;	
macrophage	 activation	 syndrome;	 sequential	 multiple	 organ	
failure;	thrombocytopenia-associated	multiple	organ	failure
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Overview
Baue et al (1–6) first described multiple system organ failure 
(MSOF) in a case series of general surgery patients who died 
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after 3 days in the ICU with sequential respiratory and then 
hepatorenal organ failures (rather than from shock in the first 
3 d of critical illness). At autopsy, these patients had a persis-
tent nidus of inflammation which Baue et al (1) hypothesized 
was the catalyst of MSOF. Steinberg et al (7) subsequently 
developed an experimental model of MSOF with the pre hoc 
intention that it be a sterile inflammation model rather than an 
infection model, and that it induce MSOF with both late sur-
vivors as well as late deaths. They discovered that only a com-
bined injection of mineral oil plus zymosan (a component of 
the Saccharomyces A cell wall) induced MSOF, whereas single 
injections of either zymosan or mineral oil induced little ill-
ness. Importantly, this “gold standard” MSOF model exhibits a 
zymosan dose response effect on degree of organ dysfunction 
and mortality. Mineral oil provides irritation and zymosan 
provides pathogen-associated molecular patterns (PAMPs), 
which together cause persistent peritoneal macrophage acti-
vation that leads to cytokine-mediated epithelial, endothelial, 
mitochondrial, immune cell, and systemic organ dysfunction. 
The endogenous cytochrome P450 (CYP450) system, which 
ameliorates inflammation, is protective in this model (8), as is 
pretreatment with etoposide (9, 10). When studying this model, 
it is important to note that the term “MSOF” has evolved to be 
interchangeable with the term “multiple organ failure” (MOF) 
and “multiple organ dysfunction syndrome” (MODS). Impor-
tantly for our purposes, the experimental sterile inflammation 
intraperitoneal mineral oil and zymosan model has been vali-
dated in both “adult” and “pediatric” rodents (11–13).

In children, the pathophysiology of MODS has been evalu-
ated in vivo and ex vivo in cohort studies using clinical defini-
tions of persistent (14), progressive, or secondary (15) MOF/
MODS described as three or more organ failures at 3 days, or 
increasing organs failing or development of MOF at 7 days, 
respectively. In these clinical studies of children with MODS, 
the findings are similar to the experimental model. Decreased 
CYP450 activity has been found to be inversely correlated with 
degree of cytokinemia and organ dysfunctions, supporting a role 
of altered metabolism in allowing pathologic inflammation (16). 
The “danger hypothesis” (17) posits that injury to endogenous 
cells releases damage-associated molecular patterns (DAMPs) 
that alter antigen-presenting cell responses to exogenous antigens 
or PAMPs in a way that amplifies the cytokine response. This 
hypothesis is supported by pediatric MODS studies (18–27). 
Children with MODS have been found to have higher circulat-
ing biomarkers of DAMPs, PAMPs, and cytokines that corre-
late with the degree of organ dysfunctions. The combination of 
decreased CYP450 metabolism, tissue injury–related DAMPs, 
and circulating PAMPs leading to self-injurious cytokinemia 
in pediatric MODS can be caused by cardiopulmonary bypass, 
trauma, cancer, liver failure, burns, pancreatitis, ischemia-reper-
fusion, inborn errors of metabolism, sepsis, rejection, graft versus 
host disease, overwhelming hemolysis, or autoimmune disease  
(Fig. 1). Cytokinemia in these children can lead to 1) epithelial cell 
dysfunction and apoptosis manifested as acute respiratory dis-
tress syndrome (ARDS), hepatobiliary dysfunction, and/or acute 
kidney tubular dysfunction; 2) endothelial cell dysfunction and 

apoptosis manifested as throm-
botic microangiopathy with loss 
of microvascular homeostasis; 
3) mitochondrial autophagy 
(mitophagy) and dysfunction 
manifested as catabolism, hiber-
nation, and dysautonomia; and 
4) immune cell dysfunction 
and apoptosis manifested as 
lymphoid organ depletion with 
ineffective microbe removal and 
tissue repair.

Experimental and clini-
cal studies demonstrate that 
genetic and environmental 
factors can impede resolu-
tion of systemic inflammation 
in pediatric MODS. A spec-
trum of three inflammation 
pathobiology phenotypes 
has been described (Figs. 2 
and 3). The first phenotype, 
thrombocytopenia-associated 
MODS, has low a disintegrin 
and metalloproteinase with a 
thrombospondin type 1 motif, 
member 13 (ADAMTS13) 
activity (formerly known as 

Figure 1. Four conditions are observed in pediatric MODS: 1) reduced cytochrome P450 activity, 2) increased 
circulating damage-associated molecular pattern molecules (DAMPs), 3) increased circulating pathogen-asso-
ciated molecular pattern molecules (PAMPs), and 4) macrophage activation driven cytokine release associated 
with epithelial, endothelial, mitochondrial, and immune cell dysfunction and apoptosis. AKI = acute kidney injury, 
ARDS = acute respiratory distress syndrome, GVHD = graft versus host disease.
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“von Willebrand factor” [vWF] cleaving protease), acute kid-
ney injury with extensive endothelial activation, and systemic 
vWF multimer thrombotic microangiopathy in brain, kidneys, 
and lungs (28–30). This has been related to oligogenic deficien-
cies in genes which produce inhibitory complement as well as 
ADAMTS13 that can lead to complement and thrombosis over-
activation (31–41). This form of MODS has been successfully 
treated with the combination of eculizumab (C5a monoclonal 
antibody) and plasma exchange (restores ADAMTS13 activ-
ity) (42–50). Hemolysis-derived free hemoglobin also drives 
this phenotype related to both ADAMTS13 inhibition and 
macrophage activation (51–54). This endothelial activation 
phenotype can be experimentally produced with monoclonal 
antibodies to ADAMTS13 or with hemorrhage (DAMP stimu-
lation) and subsequent endotoxin (PAMP stimulation) (55, 56).

The second phenotype, sequential MODS, develops soluble 
Fas ligand (sFasL)-Fas–mediated liver failure with associated oli-
gogenic deficiencies in genes related to perforin and granzyme 
signaling that lead to slow resolution of lymphocyte and mac-
rophage activation and proliferation (57). This can be repro-
duced experimentally in perforin/granzyme signaling knockout 

mice, which develop MODS 
when exposed to an otherwise 
innocuous viral antigen chal-
lenge (58–60). Patients with the 
homozygous mutant form of 
the disease are treated with che-
motherapy including etoposide 
to target lymphoproliferation 
and then eventually bone mar-
row transplantation to restore 
cytotoxic T lymphocyte (CTL)/
natural killer (NK) cell func-
tion (61). Patients with the oli-
gogenic (heterozygous) form 
are treated with solumedrol, IV 
immunoglobulin (IVIG), and 
biologics including interleu-
kin-1 receptor antagonist pro-
tein (IRAP) (61, 62). The third 
phenotype, immunoparalysis-
associated MODS, has impaired 
ability to kill infection which 
can be related in part to envi-
ronmental factors that induce 
lymphoid depletion such as 
chemotherapy, prolonged use 
of dexamethasone, and overuse 
of immunosuppressants (63–
65). Treatments may include 
immunosuppressant tapering 
and the use of granulocyte-
macrophage colony-stimulat-
ing factor (GM-CSF) (64–67).

Hyperinflammation among 
these three phenotypes, 

whether associated with hypercomplementemia, lack of CTL 
and NK cell function, or inability to kill infection and mount tis-
sue repair can all result in the macrophage activation syndrome 
(MAS) manifested clinically as hyperferritinemia (> 500 ng/mL), 
hepatobiliary dysfunction, and disseminated intravascular coag-
ulation. Oligogenic mutations in interleukin (IL)-1, interferon 
(INF)-γ, nod-like receptor-P (NLRP), and CTL/NK signaling 
(67, 68) have been attributed to macrophage activation–asso-
ciated MODS in newborns and children, and IRAP has been 
given U.S. Food and Drug Administration (FDA) orphan des-
ignation for the treatment of cryopyrin-associated autoinflam-
matory periodic syndromes spectrum of diseases which include 
familial cold auto-inflammatory syndrome, Muckle-Wells syn-
drome, and neonatal onset multisystem inflammatory disease/
chronic inflammatory neurologic cutaneous articular syndrome. 
Pediatric MAS-induced MODS has been successfully reversed 
with methylprednisolone, IVIG, and plasma exchange therapy as 
well as with IRAP (69, 70). Cytokine releasing syndrome–induced 
MODS in pediatric cancer patients treated with antineoplastic 
therapies has been successfully treated with monoclonal antibod-
ies to tumor necrosis factor (TNF), as well as to IL-6 (71, 72).

Figure 2. Environmental and genetic factors can impair the ability of the child with multiple organ dysfunction 
syndrome (MODS) to resolve inflammation: 1) Immunoparalysis is a condition in which antigen-presenting cells are 
unable to present and remove microbes and dead tissue; 2) Thrombocytopenia-associated multiple organ failure 
(TAMOF) is a condition in which complement activation is unopposed by inhibitory complement and von Willebrand 
factor (vWF) microvascular thrombosis is unopposed by ADAMTS13 (vWF cleaving protease); and 3) Sequential 
MODS is a condition in which cytotoxic T lymphocyte and natural killer cells cannot induce virus, cancer, or acti-
vated immune cell death and sFasL-Fas interactions cause liver failure. The common end pathway of uncontrolled 
inflammation is macrophage activation syndrome which can be associated with one or more of these phenotypes, 
or an inability to remove the source of inflammation for other reasons, or the presence of other pediatric hyperin-
flammatory syndromes including the cryopyrin-associated autoinflammatory periodic syndromes spectrum.  
AKI = acute kidney injury, DIC = disseminated intravascular coagulation, EBV = Epstein-Barr virus, HLA = human 
leukocyte antigen, IL = interleukin, LPS = lipopolysaccharide, NLRP3 = Nod-like receptor-P3, Plt Ct = platelet 
count, SMOF = sequential multiple organ failure, sFASL = soluble Fas ligand, TNF = tumor necrosis factor.



Copyright © 2017 by the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies.
Unauthorized reproduction of this article is prohibited

MODS	Supplement

Pediatric	Critical	Care	Medicine	 www.pccmjournal.org S35

The key to clinical success in 
preventing and reversing pedi-
atric MODS is removal of the 
source of inflammation. For 
patients who have genetic or 
environmental factors imped-
ing resolution of inflamma-
tion, clinicians can consider 
immune phenotype-specific 
strategies as well. Once inflam-
mation resolves, the clinician 
can expect that full organ func-
tion recovery will take 6–18 
weeks, which is the time needed 
for epidermal growth factor, 
hepatocyte growth factor, vas-
cular endothelial growth fac-
tor, stem cell factor, endothelial 
progenitor cells, hematopoietic 
stem cells, mesenchymal stem 
cells, and various resident stem 
cells to orchestrate epithelial 
and endothelial cell regenera-
tion, mitochondrial biogenesis, 
and immune cell reconstitu-
tion and reprogramming.

PAMPs and DAMPs
Pathogens express a diverse 
group of molecular motifs 
known as “PAMPs” that acti-
vate the inflammatory cascade. 
These motifs are recognized 
by a limited number of highly 
conserved pattern recogni-
tion receptors (PRRs), which 
include the toll-like receptors 
(TLRs) and nucleotide-bind-
ing oligomerization domain 
receptors (73, 74). These PRRs 
also recognize the endog-
enous danger signals (75) or 
DAMPs. DAMPs are molecules 
(of many classes, e.g., DNA, 
RNA, proteins/peptides, lip-
ids, carbohydrates) that are 
actively secreted or passively 
released into the extracellu-
lar environment from endog-
enous cells in response to 
tissue damage, regardless of 
cause. Since the first descrip-
tion of the cytokine-like prop-
erties of high-mobility group 
box 1 (HMGB1), it has been 
established as a prototype for 

Figure 3. Phenotype-specific therapies reported as effective in resolving inflammation and facilitating multiple 
organ dysfunction syndrome recovery. AKI = acute kidney injury, ADAMTS13, DIC = disseminated intravascular 
coagulation, GM-CSF = granulocyte-macrophage colony-stimulating factor, HLH = hemophagocytic lympho-
histiocytosis, HLA = human leukocyte antigen, IRAP = interleukin-1 receptor antagonist protein, IVIG = IV 
immunoglobulin, LPS = lipopolysaccharide, MOF = multiple organ failure, Plt Ct = platelet count, PTLD = post-
transplant lymphoproliferative disorder, sFASL = soluble Fas ligand, TAMOF = thrombocytopenia-associated 
multiple organ failure, TNF = tumor necrosis factor.

Figure 4. The dynamic immunoresponse in multiple organ dysfunction syndrome. Children who experience an 
uncomplicated recovery (black bars) frequently demonstrate prompt resolution of systemic inflammation with 
mild and transient reduction in immune function. Children with complicated courses (gray bars) often have  
persistently high levels of systemic inflammation concomitant with markedly reduced immune function.  
*Elevations in levels of suppressor cells have been demonstrated in critically ill adults but have not yet been 
found in children. HLA-DR = human leukocyte antigen, IL = interleukin, LPS = lipopolysaccharide,  
MDSC = myeloid-derived suppressor cell, Treg = regulatory T cell, TNF = tumor necrosis factor.
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DAMPs (76–83). The delayed kinetics of HMGB1 release par-
allels the onset of lethality in animal models of sepsis. Treat-
ment with neutralizing anti-HMGB1 antibodies can rescue 
mice from lipopolysaccharide (LPS) or sepsis-induced lethal-
ity (80), thereby solidifying its role as a potential therapeutic 
target. Elevated serum HMGB1 levels have been demonstrated 
in pediatric patients with MOF (81). Elevated serum HMGB1 
concentrations are also present in adult septic patients with 
MOF. However, circulating HMGB1 levels were not different 
between survivors and nonsurvivors and failed to predict hos-
pital mortality (82–84). Despite this lack of variation in serum 
HMGB1 levels between survivors and nonsurvivors, the cur-
rently held opinion is that HMGB1 is a critical late mediator of 
sepsis and a potential therapeutic target for MODS.

There is growing appreciation that both PAMPs and DAMPs 
contribute to organ failure and death although the precise 
mechanisms are unclear. PAMPs and DAMPs activate immune 
cells via TLRs leading to the production of reactive oxygen spe-
cies (ROS) that promote endothelial dysfunction by the oxida-
tion of crucial cellular signaling proteins (73). Although ROS 
are important in killing pathogens, excessive or unchecked ROS 
lead to tissue injury (85). In particular, cytokine- and hypoxia-
induced production of ROS lead to mitochondrial dysfunction 
with subsequent development of cellular dysfunction and organ 
failure (86). Brealey et al (87) reported depressed adenosine tri-
phosphate (ATP) levels in muscle biopsies taken from critically 
ill patients who went on to die, in contrast to eventual survi-
vors who demonstrated elevated ATP levels in muscle biopsies. 
Similarly, elevated tissue oxygen tensions have led Fink et al (88, 
89) to propose that septic organ failure represents cytopathic 
hypoxia, that is, cellular inability to use oxygen rather than a 
lack of its availability. Hypercytokinemia activates glycogenoly-
sis and hepatic gluconeogenesis that leads to elevated glucose 
concentrations; therefore, systemic inflammation can alter ATP 
production rate and efficiency by altering the substrate avail-
ability. ATP depletion accompanied by an inhibited Na+/K+ 
pump leads to an increase in the cellular Na+ concentration, 
resulting in cellular gain of electrolytes and water, causing early 
reversible cellular swelling (90). Inability of the organ to meet 
the ATP demand with diminished mitochondrial reserve capac-
ity can activate cell death pathways that could lead to organ fail-
ure. Thus, key effectors in the pathogenesis of MODS include 
the inflammatory response that mediates ROS with subsequent 
reduction in mitochondrial function.

Mitochondria
Mitochondria play a central role in cellular metabolism in all 
organ systems (except for RBCs) and are responsible for more 
than 90% of cellular energy production through oxidative phos-
phorylation (91). In addition to generate ATP, mitochondria 
also play an integral role in other cellular pathways, including 
gene expression, inflammation, immune function, oxidative 
stress, calcium homeostasis, cell motility, heat production, 
hormone synthesis, and regulated cell death (91). Mitochon-
drial function varies in response to both intra- and extracel-
lular factors that stress cellular bioenergetic homeostasis.

Perturbations in mitochondrial structure and function 
have been recognized for decades in animal models and, more 
recently, in critically ill patients with MODS (92). Under 
normal conditions, oxygen consumption through the mito-
chondrial electron transport system is tightly coupled to ATP 
production and is closely regulated by metabolic demand. In 
critical illness, acquired deficits in ATP production and other 
mitochondrial functions as a consequence of hypoxemia, isch-
emia, and inflammation can impair cellular bioenergetics, 
accelerate oxidant stress, and disrupt key metabolic pathways 
(92). Thus, mitochondrial dysfunction has been implicated as 
a “final common pathway” in the pathogenesis of organ dys-
function in sepsis, trauma, cardiac arrest, and other life-threat-
ening illnesses.

Several lines of evidence support a role for mitochondrial 
dysfunction in the pathogenesis of MODS. In animal models 
of sepsis and trauma, mitochondrial abnormalities have been 
reported across vital organ systems (87, 93, 94). In humans, 
decreased mitochondrial oxygen consumption, low ATP, and 
mitochondrial gene repression have been linked to illness 
severity and death (87, 95–97). Metabolomic studies further 
suggest that energetic substrates related to fatty acid oxidation 
and the citric acid cycle are less efficiently used through mito-
chondrial aerobic respiration in sepsis nonsurvivors than in 
survivors (98). Finally, both spontaneous and pharmacologic 
restoration of mitochondrial function have been associated 
with recovery from MODS and improved survival. In particu-
lar, enhancement of mitochondrial biogenesis to produce new 
mitochondria and mitophagy to remove defective mitochon-
dria has been found to restore organ function and promote 
survival (99).

Mitochondria also play a propagative role that fuels the sys-
temic inflammatory response and contributes to distant organ 
injury. Mitochondrial DNA (mtDNA) fragmented by oxidative 
stress can be exported to the cytosol or the extracellular space. 
In the cytosol, mtDNA promotes the formation of the NLRP3 
inflammasome, a supramolecular platform that up-regulates 
proinflammatory cytokines (100). In the circulation, mtDNA 
is recognized by the innate immune system as a DAMP and 
can trigger a systemic inflammatory response (101). Clinical 
studies have demonstrated an association of circulating levels 
of mtDNA with adverse outcomes (102, 103), and mtDNA has 
been proposed as a potential biomarker linked to mitochon-
drial dysfunction (103).

Notably, the term “mitochondrial dysfunction,” although 
commonly used, may be somewhat of a misnomer. Experimental 
evidence suggests that purposive down-regulation of mito-
chondrial activity likely represents an adaptive response when 
oxygen and substrate availability are low, as is common in the 
acute phase of critical illness (92, 104). Although this hypo-
metabolic state may manifest clinically as organ dysfunction, it 
is akin to mammalian hibernation and may help protect cells 
from a bioenergetic crisis and exposure to high levels of oxida-
tive stress that can precipitate cell death. The observation that 
organ function rapidly recovers in MODS survivors, even in 
organs that are poorly regenerative, supports the notion that 
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a coordinated decrease in mitochondrial activity may be both 
adaptive—at least initially—and reversible (105). The factors 
coordinating the restoration of mitochondrial respiratory 
capacity, including mitochondrial biogenesis, fission/fusion, 
and mitophagy, are an active area of research (99).

Immunoparalysis
In the current era of critical care, many children survive the 
acute stages of critical illness from a myriad of triggers (e.g., 
sepsis, trauma, cardiopulmonary bypass), only to experience 
progressive organ dysfunction and delayed death. Most ini-
tial critical insults are characterized by the proinflammatory 
host response. It is increasingly evident, however, that the sub-
acute course of critical illness is associated with an attenuated 
response of the host immune system, so-called, “immunopa-
ralysis” (Fig. 4). Investigators have identified infections from 
opportunistic pathogens, unresolved sources of infection at 
autopsy, and reactivation of latent viruses all consistent with 
a functional alteration of host immunity following the acute 
insult (106).

It is now recognized that the host immune response in 
critical illness is highly dynamic, with systemic inflammation 
often concomitant with suppression of leukocyte numbers and 
function. The latter phenomenon represents the compensa-
tory anti-inflammatory response syndrome (CARS) which, if 
transient, serves to prevent runaway inflammation (107). If 
persistent or severe, however, the CARS response represents 
an important form of acquired immune deficiency which can 
greatly complicate recovery from MODS. The development of 
impaired innate (e.g., monocyte, macrophage, dendritic cell) 
and adaptive (e.g., lymphocyte) immunity has been described 
in the aftermath of sepsis, critical viral infections, trauma, 
and cardiopulmonary bypass in children (108–112). Severe 
or persistent immune impairment has been associated with 
increased risk for secondary infection, MODS, and death in 
these settings.

The simultaneous elaboration of pro- and anti-inflamma-
tory mediators in the storm of critical illness has been termed 
“immunologic dissonance” (107). This is a result of complex 
interactions of signal transduction pathways triggered by host 
exposure to PAMPs and endogenous DAMPs. These molecules 
bind to leukocytes as well as other tissues and use a variety of 
pathways to transmit their signals to the nucleus. The propa-
gation of signals in these pathways relies on interconnected 
networks of multifunctional, signaling molecules which ulti-
mately elicit a gene expression response that impacts cellular 
functions. For each of these signaling pathways, there exist 
negative regulatory mechanisms, including decoy molecules 
and inhibitory proteins, which can repolarize the cell to an 
anti-inflammatory phenotype. The literature suggests that in 
settings such as sepsis and critical trauma, down-regulation of 
leukocyte gene expression does occur, with the degree of sup-
pression associated with mortality risk (113, 114). There are 
host-specific factors which can predispose patients to immuno-
paralysis. Family studies have demonstrated heritable tenden-
cies toward increased anti-inflammatory cytokine production 

(115) although specific polymorphisms have not been identi-
fied. Epigenetics also likely plays a role, with an anti-inflamma-
tory “gene on” histone methylation signature demonstrated in 
immunoparalysis following pediatric cardiopulmonary bypass 
(112). Disease or pathogen-specific factors are also important 
determinants of the risk for immunoparalysis. In addition to 
diseases that overtly affect immune function (e.g., primary 
immunodeficiency, leukemia), some forms of pediatric criti-
cal illness appear to be particularly immunosuppressive. These 
include severe traumatic brain injury (110) and infection with 
Staphylococcus aureus (109).

Finally, treatment-related factors can contribute to the 
development of immunoparalysis. The use of immunosup-
pressive medications such as glucocorticoids, antirejection 
drugs, and chemotherapy impair immune function. Many of 
the medications and therapies that are routinely used in the 
PICU, including sedatives and RBC transfusions, can nega-
tively modulate the immune response as well (116). In this 
complicated setting, it is therefore crucial to have immune 
function tests that can identify the patient’s place on the spec-
trum of immunosuppression or immunocompetence. This is 
particularly important because evidence suggests that immu-
noparalysis can be reversible through the use of medications 
such as GM-CSF or INF-γ with beneficial effects on outcomes 
in properly selected patients (66, 106, 117).

Innate immune function in critical illness has been mea-
sured through the quantitation of monocyte antigen-present-
ing capacity and/or cytokine production capacity. Expression 
of human leukocyte antigen (HLA)-antigen D-related (DR), 
an important antigen-presenting molecule, on the surface of 
monocytes can be quantified by flow cytometry. Data from 
critically ill adults and children suggest that risks for adverse 
outcomes increase if less than 30% of monocytes strongly 
express HLA-DR (118). Studies using a newer quantitative flow 
cytometry methodology suggest a similar threshold at less than 
8,000 HLA-DR molecules per monocyte (119). Whole blood 
from patients with immunoparalysis will not respond robustly 
to ex vivo LPS stimulation, with reduced TNF-α production 
capacity being similarly associated with secondary infection, 
and mortality risk in pediatric MODS (66). Although TNF-
α production in the laboratory will vary depending on the 
volume of blood used, the type of LPS, and the incubation 
duration, standardized protocols have been developed that 
permit single- and multicenter immune monitoring studies 
(109, 120). New microfluidic technology promises to reduce 
the blood volumes and times required for cytokine produc-
tion capacity to be determined. At present, similar to HLA-DR 
measurement, no assay for TNF-α quantitation is currently 
FDA approved for clinical use in the United States.

Adaptive immune function has also been found to be 
reduced in critical illness, both in terms of lymphocyte func-
tion and numbers. Prolonged lymphopenia, with absolute lym-
phocyte counts less than 1,000 cells/mm3, has been reported 
to independently predict secondary infection and mortality 
risks in pediatric MODS (65). Autopsy studies have demon-
strated marked lymphocyte apoptosis in lymphoid organs from 
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nonsurvivors of sepsis-induced MODS (121, 122). Reduced 
capacity of lymphocytes to produce proinflammatory cytokines 
such as INF-γ and IL-2 has been associated with increased risk 
of infectious complications in septic children (123). Although 
cell counts should be a part of the routine clinical assessment 
of immunocompetence, it is unclear which markers of lym-
phocyte function are best for use in the ICU. It is possible that 
measurement of the negative costimulatory cell surface mol-
ecule, programmed death (PD)-1 or its ligands, PD-L1 and 
PD-L2, on lymphocytes and antigen-presenting cells, respec-
tively, may have a role in ICU immune monitoring. High levels 
of PD-1, PD-L1, and PD-L2 expressions have been associated 
with immunoparalysis, and murine data suggest that they may 
be good therapeutic targets in future clinical trials (122, 124), 
potentially in combination with IL-7 therapy (125).

Hyperinflammatory Immune Mechanisms in MODS
Over the last decade, it has been convincingly demonstrated 
that immune responsiveness is down-regulated during MODS 
induced by sepsis, trauma (including traumatic brain injury), 

and other entities; however, there are notable patients who have 
“hyperinflammatory” conditions. Persistent inflammation can 
occur related to failure to achieve activated immune cell death 
(AICD). Two signal transduction systems which mediate AICD 
are particularly important, the Fas-Fas-ligand signaling pathway 
and the CTL/NK cell signaling pathway. The Fas-Fas ligand (Fas 
and FasL) molecules are among the key regulators of apoptosis 
of activated immune cells (126). Fas is a type 1 transmembrane 
protein of the TNF-receptor family. It is widely expressed consti-
tutively and can be induced during the inflammatory response. 
Ligation of Fas by the FasL triggers a signaling pathway that leads 
to AICD (127). Fas can be cleaved from the cell surface into a sol-
uble form (soluble Fas [sFas]) much like the TNF receptor and 
may serve as a decoy binding FasL and preventing its interaction 
with Fas (127). The expression of FasL is mostly restricted to 
T and NK cells (127). Its production is induced during inflam-
mation, and it has its own proinflammatory properties includ-
ing induction of IL-8, IL-1β, monocyte chemotactic protein-1, 
TNF-α, and others, and it has chemotactic properties bring-
ing neutrophils and macrophages into inflamed areas (128). 

TAblE 1. Identified Knowledge Gaps and Potential Opportunities for Study

There is a need to develop a better understanding of the role of cytochrome P450 as a protective system against MODS.

A more clear understanding of the molecular mechanisms involved in PAMP/DAMP-mediated cytokine release in MODS; such 
insight may result in the ultimate development of DAMP and PAMP modulators to prevent and ameliorate MODS.

The evolution and mechanisms of mitochondrial dysfunction and recovery in MODS are not completely established; deficits in 
mitochondrial metabolic pathways including electron transport system, citric acid cycle, and β oxidation of fatty acids require more 
evaluation. The ability to assess and monitor relatively rapid changes in mitochondrial function in a clinically relevant time frame is 
needed such that commonly used drugs which can inhibit/damage mitochondria during MODS may be assessed.

A clear understanding of the molecular mechanisms of macrophage activation in MODS is lacking.

The influence of genetic, epigenetic, and environmental factors in determining the risk for immunoparalysis, TAMOF, SMOF, and 
MAS is not completely understood. Additionally, the impact of intensive care interventions such as medications, transfusions, and 
mechanical support on the development of immunoparalysis, TAMOF, SMOF, and MAS also requires further elucidation.

The development of standardized immune function testing (e.g., human leukocyte antigen-DR expression, ex vivo 
lipopolysaccharide-stimulated TNF-α production capacity) that can be performed in the clinical laboratory in a clinically relevant 
time frame is needed.

There is a need to identify strategies for restoring immunologic balance in MODS, potentially including immunomodulation 
medications that target innate and/or adaptive immune function.

The role of FasL and defective activated immune cell death in MODS including liver injury and lymphoproliferation is not completely 
understood.

Further definition of the role of natural killer and CD8 cytolytic pathways in normal immune down-regulation and in hyperferritinemic 
MODS with MAS may help advance the field.

The genetic overlap in perforin and granzyme signaling (multiple oligogenic heterozygotes vs homozygous mutants) in pediatric 
MODS is not clearly elucidated.

There is a need for targeted therapies which control persistent hyperferritinemic hyperinflammatory states without inducing 
immunosuppression.

There is also a need for the development of a rapid and feasible biomarker assay for the identification of TAMOF such as a disintegrin 
and metalloproteinase with a thrombospondin type 1 motif, member 13, von Willebrand factor, and complement activities.

The therapeutic value of plasma exchange in the treatment of TAMOF needs to be better elucidated.

A better understanding of the common mechanistic pathways among various MODS phenotypes is needed.

The role of growth factors and regenerative response in reprogramming after MODS is not well elucidated.

DAMP	=	damage-associated	molecular	pattern;	MAS	=	macrophage	activation	syndrome,	MODS	=	multiple	organ	dysfunction	syndrome,	MOF	=	multiple	organ	
failure,	PAMP	=	pathogen-associated	molecular	pattern;	SMOF	=	sequential	multiple	organ	failure;	TAMOF	=	thrombocytopenia-associated	multiple	organ	
failure.
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TAblE 2. Reported Therapies for Multiple Organ Dysfunction Syndrome Subtypes

Subtype Treatment Study Population Design Study Outcome

Immunoparalysis Immuno suppressant 
withdrawal

  Case reports Infection and MODS 
resolution

 GM-CSF  
(66, 117, 119)

Children with ≥ 3 organ 
failure and ex vivo to 
tumor necrosis factor 
response < 168  
pg/mL, n = 14;  
GM-CSF, n = 7; 
standard, n = 7

Randomized controlled 
trial

Prospective 
single center 
(66)

GM-CSF reversed immuno-
paralysis and reduced 
the onset of nosocomial 
infection from eight 
infections in seven patients 
with placebo to zero 
infections in seven patients 
with GM-CSF (p < 0.05)

  Adults with septic shock/
severe sepsis/MODS 
and immunoparalysis 
defined by low 
monocyte HLA-DR 
expression, n = 38; 
GM-CSF, n = 19; 
placebo, n = 19

Randomized placebo 
controlled trial

Prospective 
multiple 
center study 
(115)

GM-CSF reversed 
immunoparalysis, 
increased ventilator 
free days, and improved 
physiologic severity/
MODS score  
(p < 0.05)

 INF-γ (153) Intubated adults with 
severe multiple trauma 
and immunoparalysis, 
n = 21; inhaled INF-
γ, n = 11; inhaled 
placebo, n = 10

Randomized placebo 
controlled trial

Prospective 
single center 
study (153)

Inhaled INF-γ reduced 
ventilator-associated 
pneumonia (p < 0.5) 
and restored alveolar 
macrophage HLA-DR 
expression

TAMOF Plasma exchange  
(30, 31, 48,  
49, 152)

Pediatric TAMOF, n = 42; 
15 plasma exchange; 
27 standard care

Cohort study plasma 
exchange vs 
standard therapy

Prospective 
multiple 
center 
analysis (49)

28-d mortality decreased 
from 70.4% to 26.7%; 
multivariate analysis found 
improved survival controlling 
for Pediatric Risk of Mortality, 
organ failure index, Pediatric 
Logistic Organ Dysfunction 
score, and neurologic failure 
(p = 0.048)

  Pediatric TAMOF, n = 10; 
plasma exchange, 
n = 5; standard 
therapy, n = 5

Randomized controlled 
trial plasma 
exchange vs 
standard therapy

Prospective 
single center 
(30)

Plasma exchange restored 
organ function, improved 
a disintegrin and 
metalloproteinase with a 
thrombospondin type 1 
motif, member 13 levels, and 
reduced 28-d mortality from 
80% to 0% (p < 0.05)

  Adult TAMOF, n = 37; 
plasma infusion, 
n = 22; plasma 
exchange, n = 15

Randomized trial 
plasma infusion vs 
plasma exchange

Prospective 
single center 
(152)

Plasma exchange reduced 
hospital mortality from 
32% to 0% (p < 0.001)

  Adult TAMOF, n = 102; 
plasma infusion,  
n = 51; plasma 
exchange, n = 51

Randomized trial 
plasma infusion vs 
plasma exchange

Prospective 
multiple 
center (31)

Plasma exchange reduced 
hospital mortality from 
16% to 4% (p = 0.035) 
and 6 mo mortality from 
37% to 22% (p = 0.035)

 Complement 
component 
5a antibody 
(Eculizumab) 
(42–47)

Two small phase II trials; 
age > 12 yr with 
atypical hemolytic 
uremic syndrome

Open label single arm; 
year long treatment

Prospective 
multiple 
center (42)

Improved renal function over 
time and loss of plasma 
exchange dependence 
led to Food and Drug 
Administration approval as 
orphan drug

(Continued)
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  Case series, n = 3, of 
children with hemolytic 
uremic syndrome-
Shiga toxin producing 
Escherichia coli-related 
MODS treated with 
plasma exchange/
Eculizumab rescue

Open label single arm 
2-wk treatment

Retro-spective  
Single 
Center Case 
Series (47)

Improved MODS resolution 
and renal function thought 
to be temporally related to 
Eculizumab

Sequential  
MOF

Rituximab  
(154, 155)

Phase II trial of n = 43 
adults with PTLD 
unresponsive to holding 
immunosuppression 
subsequently treated 
with rituximab

Open label single arm Prospective 
Multiple 
center study 
(154)

86% survival at 80 d; 62% 
survival at 1 yr

  Phase II trial of adding 
rituximab to low dose 
chemotherapy, n = 55, 
in children with PTLD 
already receiving low 
dose cytoxan and 
prednisone

Open label single arm Prospective  
multiple 
center  
study (155)

83% survival at 4.8 yr

 Antivirals/IV 
immunoglobulin/ 
methyl-
prednisolone

  Case reports Infection and MODS 
resolution

 HLH  
protocol (156)

Case series treated with 
HLH-94 protocol

Registry, open label 
single arm

Retro-spective, 
multiple 
center (156)

5-yr probability of survival is 
54%

Macrophage 
activation 
syndrome

Methyl prednisolone 
/IV immuno-
globulin/plasma 
exchange (69)

Pediatric secondary 
hemophagocytic 
lymphohistiocytosis/ 
sepsis/MODS/
macrophage activation 
syndrome, n = 23; 
HLH chemotherapy 
protocol, n = 6, IV 
immunoglobulin/ 
methylprednisolone, 
n = 17

Cluster randomized 
trial comparing 
HLH protocol with 
plasma exchange to 
IV immunoglobulin/
methylprednisolone 
with plasma 
exchange

Prospective 
multiple 
center 
analysis (69)

Plasma exchange and 
treatment with IV 
immunoglobulin/
methylprednisolone 
reduced hospital mortality 
from 50% to 0% 
(p = 0.002)

 IRAP (70, 157) Adult MODS with 
disseminated 
intravascular 
coagulation and 
hepatobiliary 
dysfunction

Randomized double 
blinded placebo 
controlled trial

Post hoc 
multiple 
center 
analysis 
(157)

28-d mortality decreased 
from 64.7% to 34.6% 
hazard ratio, 0.28 [95% CI 
I, 0.11–0.0071]; p = 0.007

 Pediatric secondary 
hemophagocytic 
lymphohistiocytosis/ 
sepsis/MODS/ 
macrophage activation 
syndrome treated with 
IRAP, n = 8

Case series Post hoc single 
center (70)

Considered to be temporally 
related to improvement of 
MODS. Hospital survival 
100%

 Tocilizumab (71, 
156)

Pediatric patients with 
cytokine releasing 
syndrome after chimeric 
antigen receptor T-cell 
therapy treated with 
tocilizumab, n = 13

Case series Post hoc single 
center (158)

Considered to be temporally 
related to improvement of 
MODS

GM-CSF	=	granulocyte-macrophage	colony-stimulating	factor,	HLH	=	hemophagocytic	lymphohistiocytosis,	HLA-DR	=	human	leukocyte	antigen	
DR,	INF	=	interferon,	IRAP	=	interleukin-1	receptor	antagonist	protein,	IVIG	=	IV	immunoglobulin,	MODS	=	multiple	organ	dysfunction	syndrome,	
n	=	number	of	patients,	PTLD	=	posttransplant	lympho	proliferative	disease,	TAMOF	=	thrombocytopenia-associated	multiple	organ	failure.

TAblE 2. (Continued). Reported Therapies for Multiple Organ Dysfunction Syndrome Subtypes

Subtype Treatment Study Population Design Study Outcome
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Impairment of AICD by defective Fas-FasL function can lead 
to autoimmunity, and in the autoimmune lymphoproliferative 
syndrome, Fas and FasL mutations are thought to be responsible 
(129). In children with sepsis-induced MODS (57), sFas levels 
were found to be highest in children with persistent (> 3 d) or 
sequential MODS (respiratory failure followed by hepatorenal 
failure), whereas sFasL levels were only elevated in sequential 
MODS. sFasL was associated with viral infection-related lym-
phoproliferative disease and the development of hepatic failure 
(57). Autopsy findings revealed hepatic lymphocytic infiltration, 
Epstein-Barr virus (EBV) infection, and lymphoproliferative 
disease in children with sFasL levels greater than 200 ng/mL, 
and hepatic necrosis in children with sFasL levels greater than 
500 ng/mL. In hepatocyte cell culture experiments, incubation 
with exogenous sFasL greater than 500 ng/mL results in hepa-
tocyte necrosis. These data support a role for lymphoprolifera-
tion-generated sFasL inducing hepatic injury in sequential MOF 
patients (57). Other investigators have also reported the pres-
ence of hepatocytes expressing Fas with FasL positively stained 
lymphocytic infiltration at the site of tissue injury in acute hepa-
titis/liver failure patients (130). Up-regulation of the sFas-FasL 
system has been observed in MODS related to ARDS (131, 132), 
inflammatory bowel disease (133), graft versus host disease 
(134), trauma (135), thrombotic thrombocytopenic purpura 
and disseminated intravascular coagulation (136), burns (137), 
MAS (138), and hemophagocytic lymphohistiocytosis (HLH) 
(139). All of these entities have a hyperinflammatory response. 
It is unclear whether Fas-FasL has an important role in these 
syndromes related to failed AICD or to sFasL being directly inju-
rious to tissues.

Another important mechanism to achieve AICD is CTL and 
NK cell cytolysis of target cells (140). HLH and MAS (also known 
as “secondary” or “reactive HLH”) share many features and are 
characterized by persistent hyperinflammation with hypercyto-
kinemia. In familial HLH, there are mutations of genes involved 
with NK cell degranulation of perforin and granzyme (cytolytic 
mechanisms) (141). MAS can occur with oligogenic mutations 
most often observed in children with autoinflammatory condi-
tions such as systemic juvenile idiopathic arthritis (SJIA) and its 
adult equivalent adult-onset Still’s disease, numerous autoim-
mune diseases, malignancy, viral infections, and Kawasaki dis-
ease (142–144). Both HLH and MAS are characterized by low 
NK cell activity per cell, high levels of the CTL activation marker 
soluble CD25 (IL-2 receptor), and accumulation of CD8+ CTLs 
and macrophages (143). Despite defective cytolytic activity, 
proliferation and cytokine production of these cells are robust 
leading to a prolonged and exaggerated inflammatory response 
(140, 141). Experimental and clinical studies have demonstrated 
that INF-γ is a key mediator in this process (58, 145, 146). The 
precise mechanisms leading to defective NK and CD8 cytolytic 
functions are unknown; however, one model of MAS in a genet-
ically normal rodent demonstrates that it can be induced by 
repeated TLR-9 stimulation using cytosine-phosphate guanine 
(a microbial DNA, or PAMP mimicker) (147). Autoimmune 
disease, malignancy, and some persistent viral infections result 
in TLR-9 stimulation and can provoke these syndromes. Most 

viral infections induce robust INF-γ production which sensitizes 
macrophages to TLR ligand stimulation. It is plausible that viral 
infections trigger HLH/MAS because of INF-γ induction in the 
setting of genetic susceptibility or other unknown predisposi-
tions. Recently, whole exome sequencing of patients with SJIA 
and MAS revealed several (oligogenic) heterozygous protein–
altering rare variants within some of the homozygous genetic 
mutations in the cytolytic pathway present in familial HLH. 
These findings were more common in SJIA positive MAS com-
pared with SJIA without MAS (36% vs 14%, respectively) (148).

Currently, treatment of HLH includes high dose steroids, 
cyclosporine, and etoposide, all of which have substantial toxic-
ities (149). Other biologic therapies being explored for MAS are 
anticytokine in nature including anti-IL-1, anti-TNF, and anti-
IL-6 with some case reports of paradoxical MAS (with anti-IL-1 
or anti-IL-6) during treatment for SJIA (150). In EBV-induced 
lymphoproliferation, anti-CD20 (rituximab) has been found 
to be successful (151). Because of the compelling experimental 
and clinical data implicating INF-γ, clinical trials using INF-γ 
blocking strategies are currently being conducted (146).

SUMMARY
MODS pathophysiology occurs when damaged tissue molecules 
(DAMPs), infection or bacterial toxin molecules (PAMPs), and 
reduced protective CYP450/mitochondrial metabolism lead to 
uncontrolled inflammation that perturbs endothelial, epithelial, 
immune, and mitochondrial cell homeostasis resulting in multi-
ple organ system failures/dysfunctions. Altered coagulation with 
bleeding and thrombosis, and immunodysregulation with immu-
nodepression and macrophage activation, are associated with 
several MODS phenotypes related to environmental exposures 
and host genetics. In addition to organ support, pathophysiol-
ogy-based MODS therapies may include 1) removal of damaged 
and necrotic tissues (e.g., surgery), 2) removal of infection and 
toxin sources (e.g., timely administration of appropriate antimi-
crobials and antitoxins), and 3) MODS phenotype-specific thera-
pies (e.g., immunomodulation for immunoparalysis; eculizumab 
and/or plasma exchange for thrombocytopenia-associated MOF; 
IVIG and/or rituximab for lymphoproliferative sequential MOF; 
and IVIG, methylprednisolone, and/or anti-inflammatory bio-
logics for MAS). It is hoped that with further study, important 
knowledge gaps may be bridged that will enhance the under-
standing of the pathophysiology of this life-threatening condi-
tion and result in improved outcomes (Tables 1 and 2).
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