Photoacoustic, Light-Speed, and Quantum Imaging

Lihong V. Wang, Ph.D., Bren Professor Caltech Optical Imaging Laboratory (COIL) Andrew and Peggy Cherng Department of Medical Engineering & Department of Electrical Engineering California Institute of Technology (Caltech), Pasadena

Photoacoustic computed tomography

7-Tesla magnetic resonance imaging

Time = 0.4

Molecular Specificity of Optical Imaging

Light-matter interaction uniquely positioned at the molecular level

Electromagnetic spectrum

N

Molecular Specificity of Optical Imaging

- Light-matter interaction uniquely positioned at the molecular level
- Fundamental role of molecules in biology and medicine
- In vivo functional imaging analogous to functional MRI
- In vivo metabolic imaging analogous to PET
- In vivo molecular imaging of gene expressions or disease markers
- In vivo label-free histologic imaging of cancer without excision

Challenges in Optical Penetration

Photon propagation

LV Wang, HI Wu, Biomedical Optics (Wiley, 2007); LV Wang, JJ Yao, Nature Methods 13, 627, 2016

4

Photoacoustic Computed Tomography: Deep Penetration with Optical Contrast and Ultrasonic Resolution

X Wang, Y Pang, G Ku, G Stoica, LV Wang, Nature Biotech 21, 803, 2003

Imaging of a Single Sound Source by Triangulation

Inverse Spherical Radon Transformation: Universal Backprojection

angle

First Functional (Also First *In Vivo*) Photoacoustic Tomography in Small Animals with Intact Scalp and Skull

Left-whisker stimulation

Right-whisker stimulation

X Wang, Y Pang, G Ku, G Stoica, LV Wang, Nature Biotech 21, 803, 2003

00

Commercialization of Photoacoustic Tomography

- 1. CalPACT *e
- 2. Canon
- 3. Cyberdyne
- 4. Endra *c
- 5. Fuji VisualSonics
- 6. illumiSonics
- 7. iThera (2021 CE mark approval)
- 8. Kibero
- 9. <u>Luxonus (2023 Japanese PMDA</u> <u>approval)</u>
- **10. MicroPhotoAcoustics** *e
- 11. Mindray

- **12.** OptoSonics
- **13. PA Imaging**
- 14. PhotoSound
- **15.** Photothermal Spectroscopy *p
- 16. PreXion
- 17. Seno Medical (2021 FDA approval) *c
- 18. TomoWave
- **19.** Union Photoacoustic Technologies *e
- 20. Verasonics
- 21. Vibronix
- 22. Anonymous *p
 - *c Consultant, past
 - *e Equity & patent holder
 - *^p Patent holder

Omniscale In Vivo Photoacoustic (PA) Tomography with Consistent Contrast

- Omniscale biological research from organelles to small-animal organisms
- Translation of microscopic lab discoveries to macroscopic clinical practice

LV Wang, S Hu, Science 335, 1458, 2012; LV Wang, Nature Photon 3, 503, 2009

Single Impulse Panoramic Photoacoustic Computed Tomography

[L Li, LR Zhu, C Ma, L Lin], JJ Yao, LD Wang, K Maslov, RY Zhang, WY Chen, JH Shi, LV Wang, Nature BME 1, 0071, 2017

50 Hz Frame-Rate Whole-Body Photoacoustic CT of Mice In Vivo

[L Li, LR Zhu, C Ma, L Lin], JJ Yao, LD Wang, K Maslov, RY Zhang, WY Chen, JH Shi, LV Wang, Nature BME 1, 0071, 2017

Commercialized Whole-Body Photoacoustic Computed Tomography System

CalPACT, LLC and Union Photoacoustic Technologies, Ltd.; Conflict of Interest

Single Breath-Hold Panoramic Photoacoustic Computed Tomography of Human Breasts: Schematic of the Equipment

[L Lin, P Hu, J Shi], CM Appleton@WUSTL, K Maslov, L Li, R Zhang, LV Wang, Nature Comm 9, 2352, 2018

Photoacoustic Tomo/Elastography of a Radiographically Dense Human Breast

X-ray mammograms

Patient 6 (Invasive ductal carcinoma, age 69)

Elastography

amp.

A

0

Norm.

4 cm Elevational distance from nipple

[L Lin, P Hu, J Shi], CM Appleton@WUSTL, K Maslov, L Li, R Zhang, LV Wang, Nature Comm 9, 2352, 2018

Arterial and Venous Photoacoustic Mapping in Human Breasts

Heartbeat encoded arterial network

Normalized amplitude within 1.0 – 1.6 Hz

Label-Free Photoacoustic Imaging vs Gadolinium-Contrast MRI

- Solid arrows: tumors
- 1–5: vessels detected by both PACT and MRI
- a-c: vessels detected by PACT only

Left: El Neuschler, R Butler, CA Young, LD Barke, ML Bertrand, M Böhm-Vélez, ..., BE Dogan, Radiology (2018). Xin Tong, Li Lin, Yilin Luo, Peng Hu, [Armine Kasabyan, Marta Invernizzi, Lily Lai, Lisa Yee]@COH, LV Wang, *unpublished*

Photoacoustic Imaging of Human Extremities: Arm and Leg

Potential applications

- Screen/diagnose diabetic foot
- Diagnose vascular obstructions
- Assist in vascular surgery
- Monitor postop revascularization surgery
- Monitor perfusion

P Wray, L Lin, P Hu, LV Wang, *J Biomed Opt* 24, 026003, 2019

Human Breast/Brain Photoacoustic Tomography

- > Anatomic mode (10 s 3D)
- Function mode (2 s 3D)

- Dual laser wavelengths
 - > 1064 nm, 10 Hz (HbO₂ dominant)
 - 694 nm, 1 Hz (HbR dominant)

[S Na, J Russin, L Lin, X Yuan], P Hu, KB Jann, L Yan, K Maslov, J Shi, DJ Wang, CY Liu@USC, LV Wang, Nature BME, 2021 (https://doi.org/10.1038/s41551-021-00735-8)

First Functional Photoacoustic Tomography of Human Brains

[S Na, J Russin, L Lin, X Yuan], P Hu, KB Jann, L Yan, K Maslov, J Shi, DJ Wang, CY Liu@USC, LV Wang, *Nature BME* 6, 584, 2022

First Functional Photoacoustic Tomography vs 7-T fMRI of Human Brains

[S Na, J Russin, L Lin, X Yuan], P Hu, KB Jann, L Yan, K Maslov, J Shi, DJ Wang, CY Liu@USC, LV Wang, *Nature BME* 6, 584, 2022

Functional PACT vs fMRI of Cortical Human Brains

	fPACT	fMRI
Contrast	HbR, HbO ₂ , [sO ₂ , HbT]	HbR
Response time	sO ₂ : 6.5 ± 0.6 s; HbT: 6.1 ± 0.7 s	BOLD: 7.8 ± 0.6 s
Background	Low	High
Linearity	Yes	No
Portability	Yes	No
Platform	Open	Closed
Acoustic noise	Low	High
Cost	Lower	High (\$10M + \$150K/year)
Magnet	No	Yes
HbR: deoxyhemoglobin;HbO2: oxyhemoglobinHbT: total hemoglobin; $sO2: O2$ saturationBOLD: blood oxygenation-level dependent signal		

In Vivo Photoacoustic Tomography of Sentinel Lymph Node (SLN) in Humans for Breast Cancer Staging

4. Examine the specimens for cancer

A Garcia-Uribe, T Erpelding@Philips, K Maslov, C Appleton, J Margenthaler, LV Wang, Sci Rep 5, 15748, 2015

-1

Azimuth (cm)

In Vivo Functional Photoacoustic Imaging of Oxygen Saturation (sO₂) in Humans Co-Registered with Ultrasonic Imaging

A Garcia-Uribe, T Erpelding@Philips, [K Reddy, A Sharma]@WUSTL, LV Wang, arXiv 2303.10775, 2023

In Vivo Photoacoustic Microscopy of Single Circulating Tumor Cells in Humans

J Biomed Optics 25, 036002, 2020

In Vivo Human Photoacoustic Vector Tomography Beyond Optical Diffusion Limit

[Y Zhang, J Olick-Gibson], A Khadria, LV Wang, Nature Biomedical Engineering, in press

First 3D Photoacoustic Microscope

K Maslov, G Stoica, LV Wang, Optics Lett 30, 625, 2005

H Zhang, K Maslov, G Stoica, LV Wang, Nature Biotech 24, 848, 2006; Nature Protoc 2, 797, 2007

Wave of Single-Impulse–Stimulated Single-Vessel Response in Mouse Brains

532 & 558 nm wavelengths

1 MHz 1D imaging rate

sO₂: oxygen saturation of hemoglobin

HbT: total concentration of hemoglobin

Y He, J Shi, K Maslov, R Cao, LV Wang, J Biomed Optics 25, 066501, 2020

Loop 1

Single-Impulse–Stimulated Fast Initial Dip in Single Capillaries of Mouse Brains

Y He, J Shi, K Maslov, R Cao, LV Wang, J Biomed Optics 25, 066501, 2020

sO₂: oxygen saturation of hemoglobin

HbT: total concentration of hemoglobin

Single-Impulse–Stimulated Fast Initial Dip in Single Vessels of Mouse Brains: Dependence on Vessel Diameter

Y He, J Shi, K Maslov, R Cao, LV Wang, J Biomed Optics 25, 066501, 2020

Needle-Shaped Beam Photoacoustic Microscopy

[R Cao, J Zhao], L Li, L Du, Y Zhang, Y Luo, L Jiang, S Davis, Q Zhou, A de la Zerda, LV Wang, Nature Phot 17, 89, 2023

Ultraviolet-Localized Mid-Infrared (MIR) Photoacoustic Microscopy (ULM-PAM) for High-Resolution, High-Contrast Imaging of Fresh Biological Samples

MIR focal spot

UV focal spot

Conventional MIR imaging:

- 1. Low spatial resolution
- 2. Transmission mode
- 3. High water background

J Shi, T Wong, Y He, L Li, R Zhang, C Yung, J Hwang@NIST, K Maslov, LV Wang, *Nature Phot* 13, 609, 2019. Grueneisen relaxation: L Wang, C Zhang, LV Wang, PRL 113 174301, 2014

Ultraviolet-Localized Mid-Infrared Photoacoustic Microscopy (ULM-PAM) of Lipids, Proteins, and Nucleic Acids in Fresh Fibroblast Cells

Advantages over conventional MIR imaging:

- 1. High spatial resolution
- 2. Reflection mode
- 3. Low water background

J Shi, T Wong, Y He, L Li, R Zhang, C Yung, J Hwang@NIST, K Maslov, LV Wang, Nature Phot 13, 609, 2019

Label-Free Photoacoustic Histology by Imaging DNA & RNA in Cell Nuclei

Photoacoustic microscopy without staining

Histology with hematoxylineosin staining

TTW Wong, RY Zhang, P Hai, C Zhang, MA Pleitez, [RL Aft, DV Novack]@WUSTL, LV Wang, Science Adv 3, e1602168, 2017

35

Decalcification-Free and Label-Free Photoacoustic Histology of Bone Specimens by Imaging DNA & RNA in Cell Nuclei

Histology with calcification and hematoxylin & eosin staining (1–7 days)

100 µm

Photoacoustic microscopy without decalcification or staining (<11 minutes)

Reduce margin from 20 to 2 mm

Rui Cao, Scott Nelson, Samuel Davis, Yu Liang, Yilin Luo, Yide Zhang, Brooke Crawford @UCLA, and Lihong V. Wang, *Nature BME* (2022)

Label-Free Photoacoustic (PA) Nanoscopy of a Mitochondrion with Sub-Organelle Resolution: Beat Optical Diffraction Nonlinearly

A Danielli, K Maslov, A Garcia-Uribe, A Winkler, CY Li, LD Wang, Y Chen, G Dorn, LV Wang, *J Biomed Optics* 19, 086006, 2014; Collaboration: G Dorn; J Yao, LD Wang, CY Li, C Zhang, LV Wang, *Phys Rev Lett* 112, 014302, 2014

High-gain and High-speed Wavefront Shaping Through Scattering Media

Z Cheng, C Li, A Khadria, Y Zhang, LV Wang, *Nature Phot,* accepted, 2023

First Whole-Body Human Ultrasound Tomography System

AWG: arbitrary waveform generator PA: power amplifier MN: matching network DAQ: data acquisition

DC Garrett, J Xu, G Ku, LV Wang, arXiv:2307.00110

First Whole-Body Human Ultrasound Tomography Images

IVC: inferior vena cava RL: right lobe of liver St: stomach VB: vertebral body AA: abdominal aorta LL: left lobe of liver Sp: spleen SC: spinal cord

DC Garrett, J Xu, G Ku, LV Wang, arXiv:2307.00110

Watch a Flying Laser Pulse with Single-Shot Compressed Ultrafast Photography at 100 Billion Frames/Second

10 mm

COILab.Caltech.edu

4

[L Gao, J Liang], C Li, LV Wang, *Nature* 516, 74, 2014

Video slowdown: 10 billion X

Multi-Shot 2D Imaging using a Streak Camera

- Scanning is required along the axis that is perpendicular to the entrance slit
- The event itself must be repeatable

http://hamamatsu.magnet.fsu.edu/tutorials/java/streakcamera/

Single-Shot Compressed Ultrafast Photography: 100 Billion Frames per Second

[L Gao, J Liang], C Li, LV Wang, Nature 516, 74, 2014; Comments by B Pogue, Nature 516, 46

43

Watch a Flying Superluminal Mach Cone with Single-Shot Compressed Ultrafast Photography at 100 Billion Frames/Second

Supersonic Mach cone (Sonic Boom)

Superluminal Mach cone (Optical Boom)

[J Liang, C Ma, L Zhu], YJ Chen, L Gao, LV Wang, Science Adv 3, e1601814, 2017

Real-Time Imaging of a Bouncing Photon Packet in a Chaotic Cavity

[L Fan, X Yan], H Wang@USC, LV Wang, Science Adv 7, eabc8448, 2021

Compressed Ultrafast Photography of Electrical Pulses along Myelinated Axons

[Y Zhang, B Shen], T Wu, J Zhao, JC Jing, P Wang, K Sasaki-Capela, WG Dunphy, D Garrett, K Maslov, W Wang, LV Wang, *Nature Comm* 13, 5247, 2022

Compressed Ultrafast Spectral Photography (CUSP): 219 THz

P Wang, LV Wang, *Adv Science* 10, e2207222, 2023: 219 THz P Wang, J Liang, LV Wang, *Nature Comm* 11, 2091, 2020: 70 THz

Comparison of Single-Shot Ultrafast Optical Imaging Techniques

Standard Quantum Limit vs Heisenberg Limit with N Photons

Spatial resolution at the standard quantum limit \propto $1/\sqrt{N}$

- The standard quantum limit is achieved with a regular light source such as a laser
- Examples: two-photon microscopy, **PALM/STORM**
- Intuitively, *N* statistically independent photons average the spatial standard error down by \sqrt{N} times according to the central limit theorem
- Spatial resolution at the Heisenberg limit $\propto 1/N$
 - The Heisenberg limit is achieved with an entangled-photon source such as a spontaneous parametric down conversion (SPDC) source
 - Intuitively, N entangled photons behave like one with N times greater momentum or shorter wavelength.

Entangled photon pair Signal Idler **Object Coincidence counts**

COILab.Caltech.edu

Quantum Microscopy of Cells using Entangled Photon Pairs

CW, continuous wave. GL, Glan-Laser polarizer. HWP, half-wave plate. VWP, variable wave plate. BBO, β -barium borate crystals. BPF, 532 nm bandpass filter. PBS, polarizing beam splitter. EMCCD, electron multiplying charge-coupled device camera. P₀, the Fourier plane of the BBO crystal.

[Z He, Y Zhang, X Tong], L Li, LV Wang, *Nature Comm* 14, 2441, 2023

Quantum Microscopy of HeLa Cells using Entangled Photon Pairs

Scale bars, 20 µm

COILab.Caltech.edu

51

Rich Optical Contrasts and Multiscale Imaging from Organelles to Patients

Diverse molecules interacting with light at chosen wavelengths

- Nucleic acids: DNA, RNA
- Carbohydrates: Glucose, cellulose
- Lipids: Fat, myelin
- Proteins: Oxy/deoxy/met/carboxy-hemoglobin, myoglobin, cytochromes
- Other endogenous molecules: Melanin, bilirubin, water
- **Exogenous absorbers: Dyes, nanoparticles**
- *In vivo* functional imaging: blood oxygenation/perfusion, brain activity •
 - Concentration of hemoglobin (angiogenesis)
 - Oxygen saturation of hemoglobin (hyperoxia/normoxia/hypoxia)
 - **Blood flow (Doppler effect)**
- In vivo metabolic imaging •
 - Metabolic rate of oxygen (hyper-metabolism)
 - Glucose uptake via glucose analogs
- In vivo molecular imaging
 - Biomarkers: Integrin, VEGF, HER2
 - Reporter genes: LacZ, iRFP, tyrosinase
- In vivo label-free histologic imaging
 - Cell nuclei
 - Cytoplasm

Oxygen binding to hemoglobin

Picture: Wikipedia

Further Information

LIHONG V. WANG HSIN-I WU