

Regulatory Science for Evaluation of Medical Imaging Devices

Bahaa Ghammraoui

Division of Imaging, Diagnostics, and Software Reliability Office of Science and Engineering Laboratories Center for Devices and Radiological Health U.S. Food and Drug Administration

17th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Fully3D) at Stony Brook -- July 19, 2023

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

Outline

- 1. Introduction
- 2. AI/ML Image Processing Software regulatory Pathway and Considerations
- 3. Regulatory Science Research at FDA: Deep Learning Image Reconstruction and Denoising in CT
- 4. Considerations and Regulatory Science Research at FDA: Evaluating Imaging Systems with Photon Counting Detectors

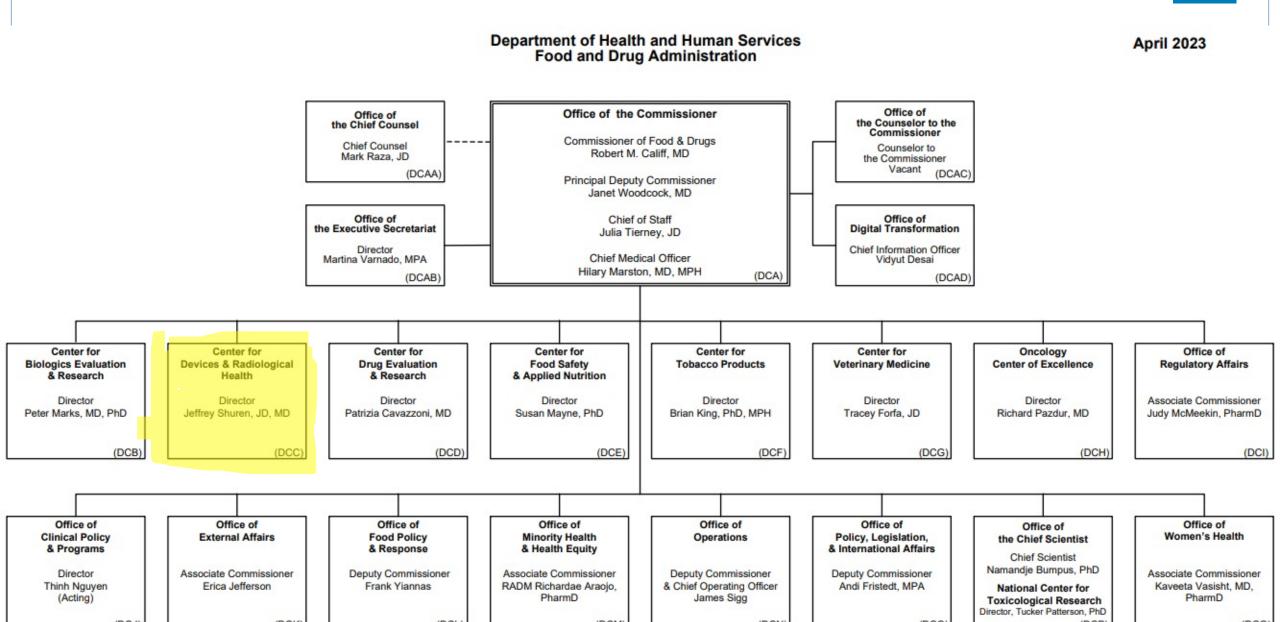
DISCLAIMER: The mention of commercial products herein is not to be construed as either an actual or implied endorsement of such products by the U.S. Department of Health and Human Services.

Most of this material is taken from other people. Thanks to those people.

FD/

Outline

1. Introduction


- 2. AI/ML Image Processing Software regulatory Pathway and Considerations
- 3. Regulatory Science Research at FDA: Deep Learning Image Reconstruction and Denoising in CT
- 4. Considerations and Regulatory Science Research at FDA: Evaluating Imaging Systems with Photon Counting Detectors

FD/

Introduction

- Brief overview of the Office of Science and Engineering Laboratories (OSEL)
- 2. Importance of regulatory science in medical imaging

Regulatory science research at CDRH/OSEL/DIDSR

DA U.S. FOOD & DRUG

CENTER FOR DEVICES & RADIOLOGICAL HEALTH OFFICE OF SCIENCE & ENGINEERING LABORATORIES

RESEARCH HAPPENS HERE

OSEL's mission is to accelerate patient access to innovative, safe, and effective medical devices through best-in-the-world **Regulatory Science**.

OSEL's vision is to transform the lives of patients by generating renowned and transparent Regulatory Science that streamlines the medical device review process. <u>OSEL Video</u>

This Photo by Unknown Author is licensed under CC BY-SA-NC

Regulatory Science

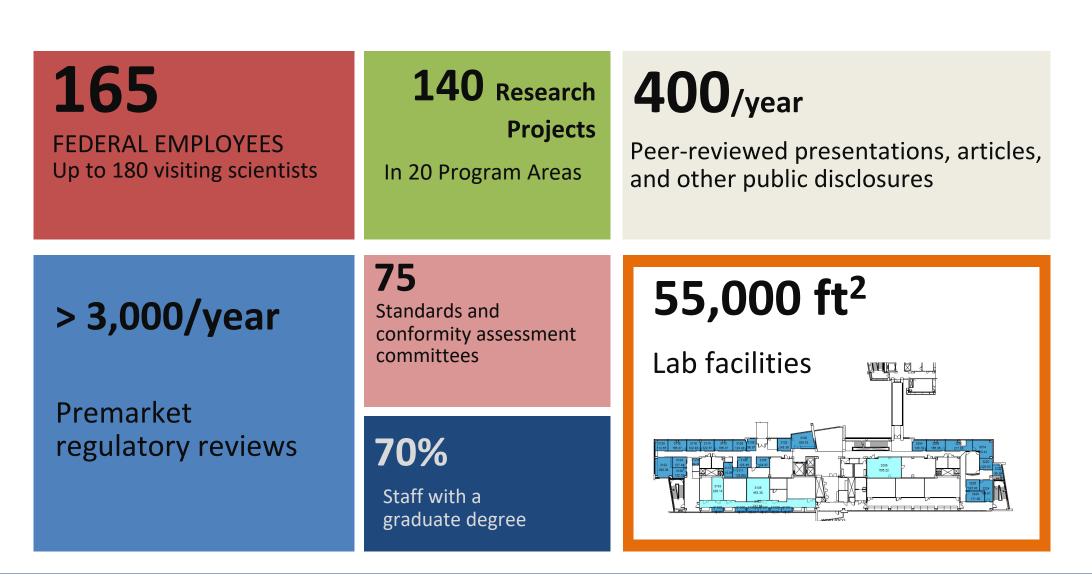
Regulatory Science is an established discipline that entails the application of the scientific method to support regulatory and other policy objectives.

To assess benefits and risks, Regulatory Scientists develop new tools, standards, and approaches to evaluate the effectiveness, safety, and quality of medical products."

Marble et al. J Pathol Inform 2020

Focus Areas of Regulatory Science Report

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science


Office of Science and Engineering Laboratories (OSEL)

- Conduct laboratory-based regulatory research to facilitate development and innovation of safe and effective medical devices and radiation emitting products
- Provide scientific and engineering expertise, data, and analyses to support regulatory processes
- Collaborate with colleagues in academia, industry, government, and standards development organizations to develop, translate, and disseminate science and engineering-based information regarding regulated products
- <u>https://www.fda.gov/about-fda/cdrh-offices/office-science-and-engineering-laboratories</u>

CDRH's Office of Science and Engineering Labs

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

Division of Imaging, Diagnostics and Software Reliability (DIDSR)

- Develop least burdensome approaches for regulatory evaluation of imaging and big-data devices
- Develop measures of technical effectiveness of imaging and big-data technologies
 - Phantoms, laboratory measurements, computational models

DIDSR in Perspective

50 FEDERAL EMPLOYEES 40 Fellows/Students Open Staff Positions

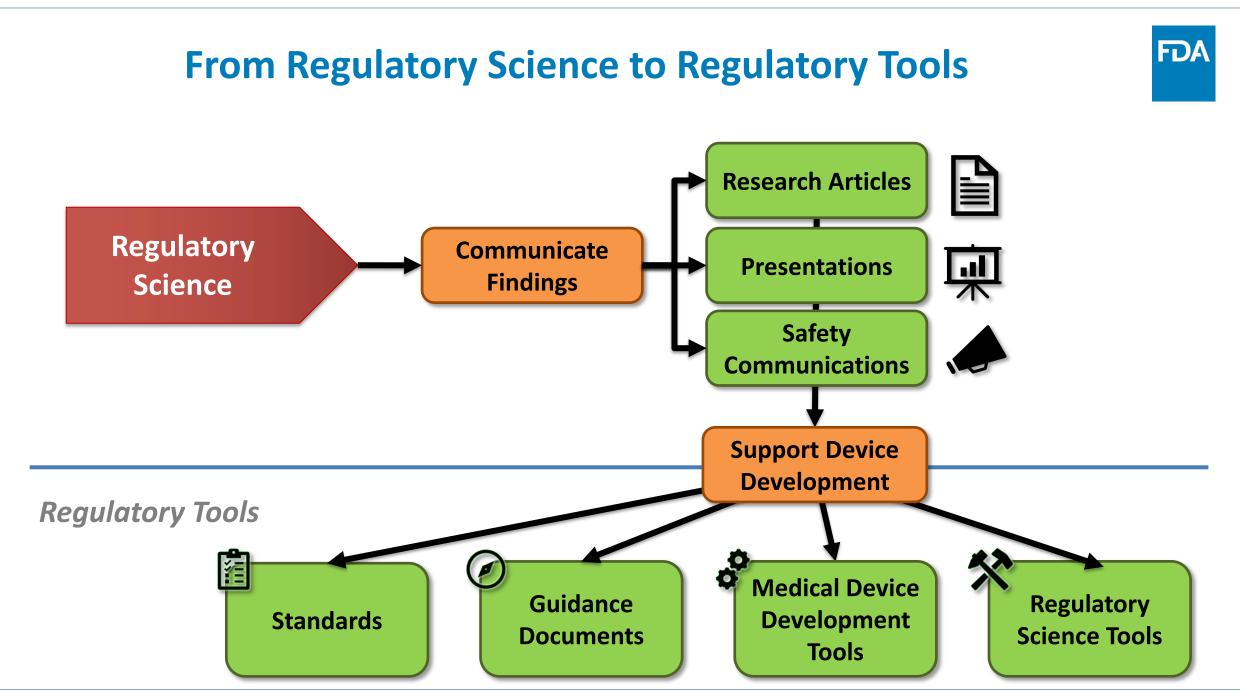
100+/year

Peer reviewed articles, code and presentations

4 Program Areas

AI/ML

Medical Imaging and Diagnostics


Medical Extended Reality

Digital Pathology

350+/year

Premarket Regulatory consults ~15,000 ft²

DIDSR Lab and facilities

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

OSEL Program Areas Advancing Regulatory Science Research and Tools

- Additive Manufacturing
- Advanced Patient Monitoring and Control
- AR/VR extended reality (XR)
- Artificial Intelligence (AI) / Machine Learning
- Biocompatibility/Toxicology
- Cardiovascular
- Credibility Assessment in Modeling
- Digital Pathology
- Electromagnetic and Electrical Safety
- Emergency Preparedness

- Materials Chemistry and Mechanical Performance
- Medical Imaging and Diagnostics
- Microfluidics
- Nanotechnology
- Neurology
- Ophthalmology
- Orthopedic Devices
- Post Market Signal Response
- Sterility and Infection Control
- Therapeutic Ultrasound

- Human Device Interaction
 - <u>https://www.fda.gov/medical-devices/science-and-research-medical-</u> <u>devices/catalog-regulatory-science-tools-help-assess-new-medical-devices</u>

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

Evolution in Medical Imaging: A Personal Perspective

- AI/ML Enabled Devices Artificial Intelligence and Machine Learning.
- AR/VR Technologies Augmented and Virtual Reality
- Photon Counting Detectors in X-ray Imaging

Outline

1. Introduction

2. AI/ML Image Processing Software regulatory Pathway and Considerations

- 3. Regulatory Science Research at FDA: Deep Learning Image Reconstruction and Denoising in CT
- 4. Considerations and Regulatory Science Research at FDA: Evaluating Imaging Systems with Photon Counting Detectors

DISCLAIMER: The mention of commercial products herein is not to be construed as either an actual or implied endorsement of such products by the U.S. Department of Health and Human Services.

Most of this material is taken from other people. Thanks to those people.

T

FDA

AI/ML Image Processing Software Pathway and Considerations

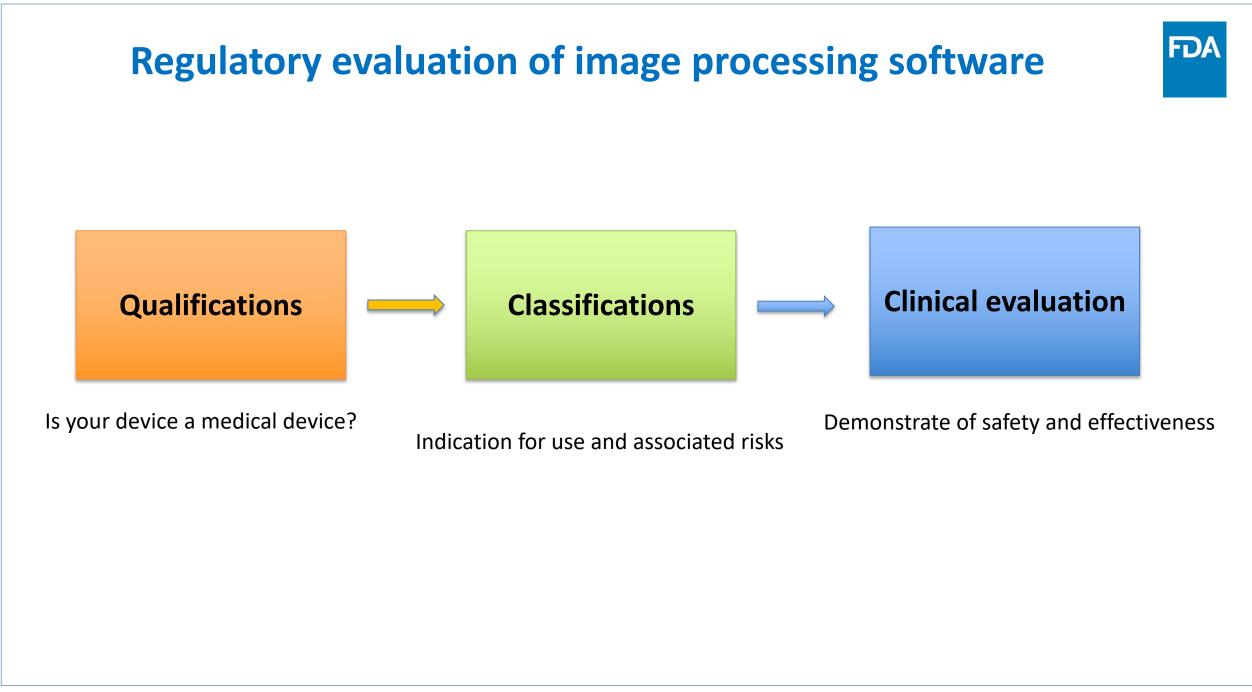
- 1. Explanation of the regulatory pathway for evaluating AI/ML image processing software
- 2. Key considerations in regulatory science for AI/ML image processing software

DISCLAIMER: The mention of commercial products herein is not to be construed as either an actual or implied endorsement of such products by the U.S. Department of Health and Human Services.

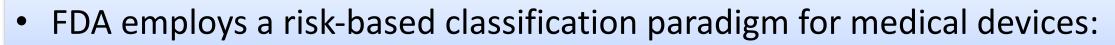
Most of this material is taken from other people. Thanks to those people.

Some AI/ML/CAD Devices Cleared/Approved by FDA

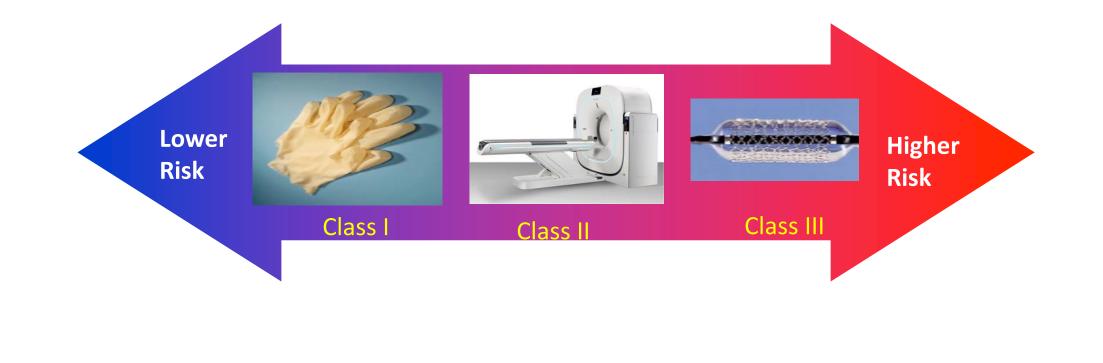
AI/ML-Enabled Medical Devices


Devices are listed in reverse chronological order by Date of Final Decision. To change the sort order, click the arrows in the column headings.

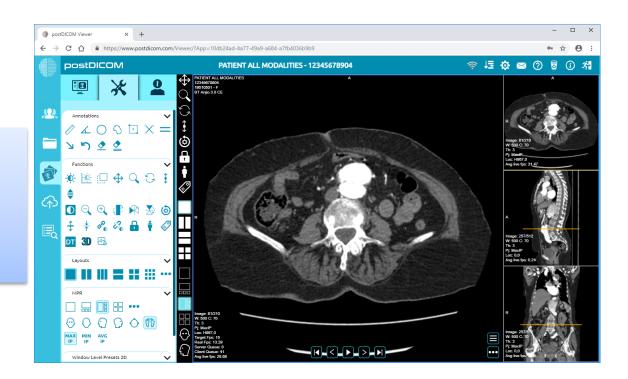
Use the Submission Number link to display the approval, authorization, or clearance information for the device in the appropriate FDA database. The database page will include a link to the FDA's publicly available information.


					Expo	rt Excel	Show	50	~	entries
Date of Final Decision 🚽	~	Submission Number	\$ Device \$	Company	¢	Panel (Lead)	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Primar Produc Code		\$
07/29/2022		<u>K213760</u>	ABMD Software	HeartLung Corporation		Radiolo	gy	KGI		
07/29/2022		<u>K220961</u>	Deep Learning Image Reconstruction	GE Healthcare Japan Corporation		Radiolo	gy	JAK		
07/28/2022		<u>K213998</u>	cvi42 Auto Imaging Software Application	Circle Cardiovascular Imag Inc	jing	Radiolo	gy	QIH		
07/28/2022		K221923	Swoop Portable MR Imaging System	Hyperfine, Inc.		Radiolo	gy	LNH		
07/27/2022		<u>K210822</u>	DeepRhythmAI	Medicalgorithmics S.A.		Cardiov	ascular	DQK		
07/25/2022		K220439	Viz SDH	Viz.ai, Inc.		Radiolo	gy	QAS		
07/22/2022		<u>K220624</u>	AI4CMR v1.0	AI4MedImaging Medical Solutions S.A.		Radiolo	ду	LLZ		
07/22/2022		<u>K220882</u>	Vivid E80, Vivid E90, Vivid E95	GE Medical Systems Ultras and	ound	Radiolo	ду	IYN		
07/22/2022		<u>K220940</u>	EchoPAC Software Only, EchoPAC Plug-in	GE Medical Systems Ultras and Primary Care Diagnost		Radiolo	ду	QIH		
07/20/2022		K220956	Libby Echo:Prio	Dyad Medical, Inc		Radiolo	gy	QIH		
07/19/2022		<u>K213357</u>	Study Watch with Irregular Pulse Monitor (Home), Study Watch with Irregular Pulse Monitor	Verily Life Sciences LLC		Cardiov	ascular	DXH		

	Radiology		
	Pathology		
	Orthopedic		
	Ophthalmic		
	Obstetrics And G	ynecology	
	Neurology		
	Microbiology		
	Hematology		
	General Hospital		
	General And Plas	stic Surgery	
	Gastroenterology	v & Urology	
	Dental		
	Clinical Chemistr	у	
	Cardiovascular		
	Anesthesiology		
Γ	1	1	
0	100	200	300
Number of F	EDA Cleared and A	aproved Medical	Dovidoo with AL/M


Number of FDA Cleared and Approved Medical Devices with AI/ML

Medical device classification



- Medical devices are classified and regulated according to degree of risk to the public.

Image processing software

Image processing and tomographic reconstruction software devices are typically classified as class II and cleared through 510(k) as substantially equivalent to a predicate device.

FD/

CAD software has multiple regulations

Computer Aided Detection	 CADe: direct clinician's attention to aid the identification of potential disease; 510(k) under 21 CFR 892.2050 or 892.2070
Computer Aided Diagnosis	 CADx: concurrent/sequential use to aid the classification of lesions suspicious of cancer; 510(k) under 21 CFR 892.2060
Computer Aided Detection & Diagnosis	 CADe/x: combined systems that both detect and provide a classification of potential disease; 510(k) under 21 CFR 892.2090
Computer Aided Triage & Notification	 CADt: notification of potentially time sensitive findings – not CADe/x; 510(k) under 21 CFR 892.2080

Radiological Acquisition & Optimization Guidance

• CADa/o: aid the acquisition/optimization of images/diagnostic signals; 510(k) under 21 CFR 892.2100

[Slide provided by Jana Delfino]

3. Guidance for Assessment of Radiological AI/ML

- 510(k) guidance
 - Stand-alone device performance
 - Content of a 510(k) submission

- AI/ML enabled device:
 - Large representative validation dataset likely needed

Guidance for Industry and Food and Drug Administration Staff Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device Data - Premarket Notification [510(k)] Submissions Clinical Performance Assessment:

The draft of th

Do

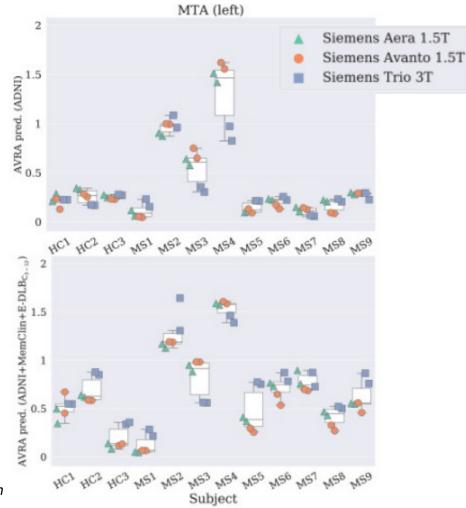
For questions regarding this gu or by e-mail at <u>Nicholas.Petricl</u> e-mail at <u>Mary.Pastel@fda.hhs</u> Clinical Performance Assessment: Considerations for Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device Data in -Premarket Notification (510(k)) Submissions

FDA

Guidance for Industry and FDA Staff

Document issued on: January 22, 2020

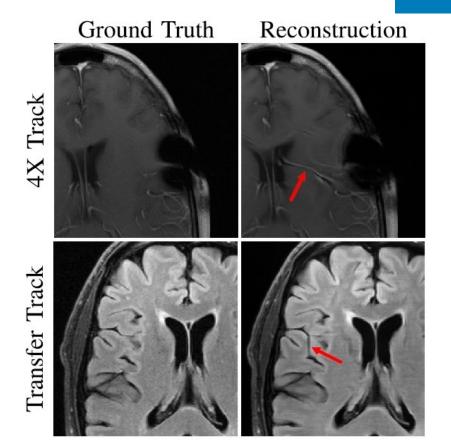
Document originally issued on July 3, 2012


For questions regarding this guidance document, contact Nicholas Petrick at 301-796-2563, or by email at <u>Nicholas Petrick@fda.hhs.gov</u>; or Robert Ochs at 301-796-6661, or by e-mail at <u>Robert.Ochs@fda.hhs.gov</u>.

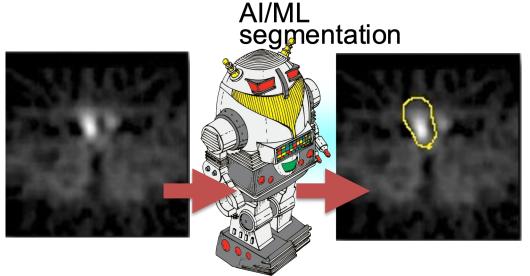
Opportunities and Challenges

The performance/outputs of an AI/ML software can change between sites or scanners.

The outputs of the Medial Temporal Atrophy (MTA) scale are affected by the scanners and the training datasets used.

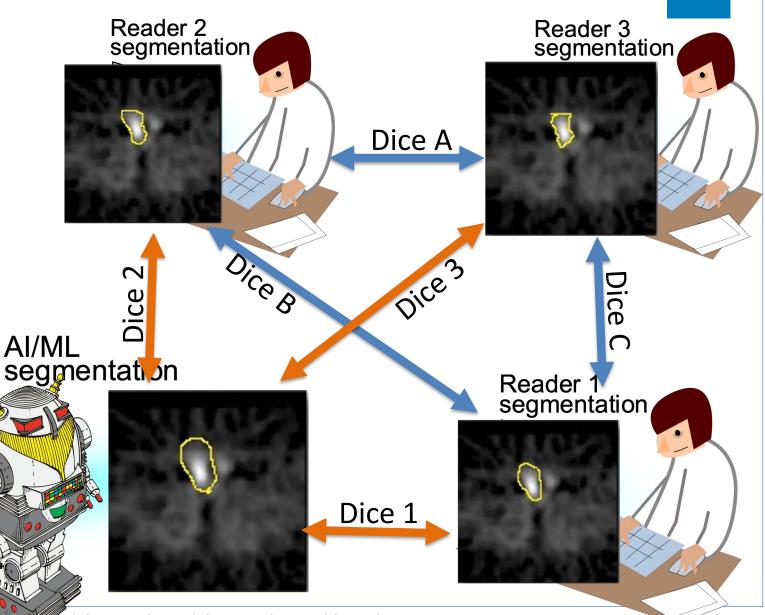

Mårtensson, Gustav, et al. "The reliability of a deep learning model in clinical out-of-distribution MRI data: a multicohort study." Medical Image Analysis (2020): 101714. [MRI brain imaging, site variability]

Opportunities and Challenges


Opinions of experts about device output may not be adequate.

A schematic of hallucinations from DL-based reconstruction of a clinical pediatric MR brain image with training performed on adult brain images.

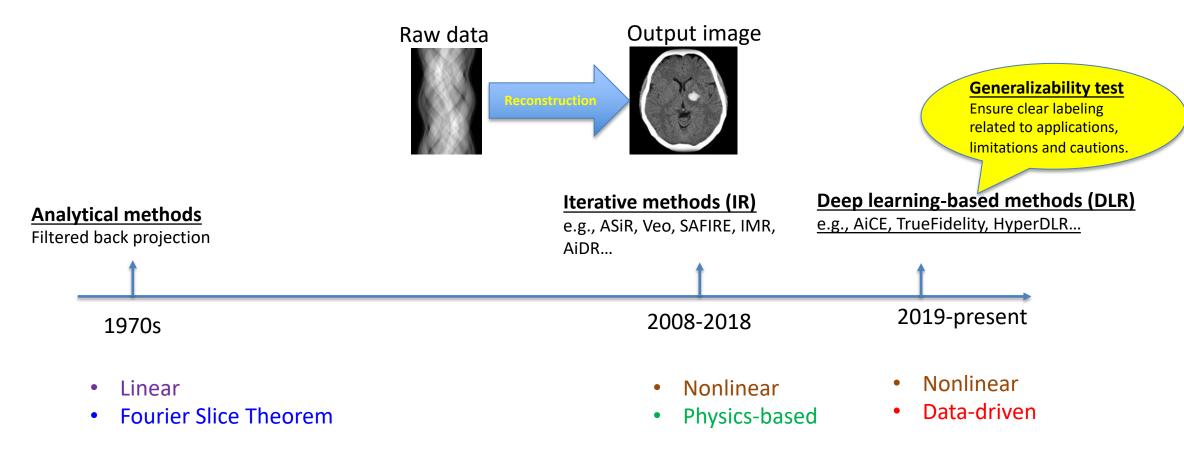
AI/ML/CAD Segmentation Devices


- Claim: Software can automatically segment lesion
- Example evaluation study: Agreement study

AI/ML/CAD Agreement for Segmentation Devices

- Compare segmentations among readers using Dice or other measures (A,B,C).
- Compare segmentations between AI and readers (1,2,3)

- Are Dice 1,2,3 non-inferior to Dice A,B,C?
 - Then AI may be interchangeable with readers


FDA

OSEL Accelerating patient access to innovative, safe, and effective and devices through best-in-the-world regulatory science

Deep Learning Image Reconstruction and Denoising Devices

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

Generalizability Performance of Deep Learning Image Reconstruction and Denoising in CT

Reconstruction AI Devices

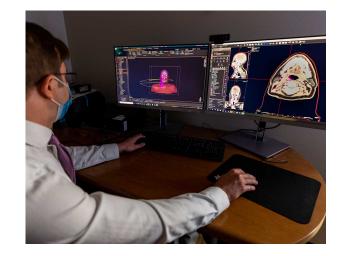
Bench testing performance:

- CT Number Accuracy
- Contrast-to-Noise Ratios (CNR)
- Uniformity

. . .

- Slice Sensitivity Profile (SSP)
- Modulation Transfer Function (MTF)
- Low contrast Resolution
- Standard Deviation of Noise (SD) in Midplane
- Standard Deviation of Noise (SD) along z-axis
- Noise Power Spectra (NPS)
- Visual inspection of image artifacts.
- Low Contrast Detectability (LCD) (dose claims)

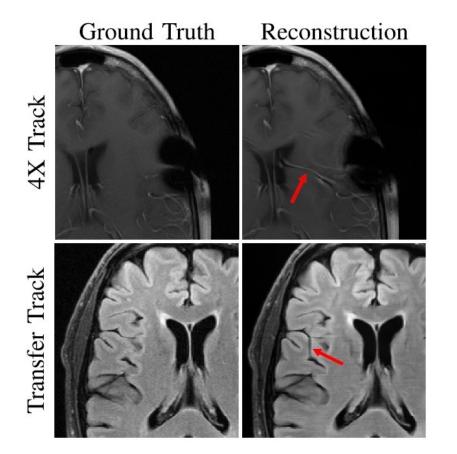
FD/


Reconstruction AI Devices

Clinical Evaluation:

Favor objective image quality evaluation through detection or estimation tasks.

Considerations:


- Engage certified radiologists.
- Employ side-by-side image comparison.
- Use actual patient images.
- Ensure data is representative, covering the IFU, patient population, anatomical variants, etc.

FD

Reconstruction AI Devices

Opinions of experts about device output may not be adequate.

Outline

1. Introduction

- 2. AI/ML Image Processing Software regulatory Pathway and Considerations
- 3. Regulatory Science Research at FDA: Deep Learning Image Reconstruction and Denoising in CT
- 4. Considerations and Regulatory Science Research at FDA: Evaluating Imaging Systems with Photon Counting Detectors

Regulatory Science Research at FDA: Deep Learning Image Reconstruction and Denoising in CT

- 1. Generalizability in CT imaging
- 2. Generalizability in pediatric populations
- 3. Generalizability in testing backgrounds

Generalizability Performance of Deep Learning Image Reconstruction and Denoising in CT

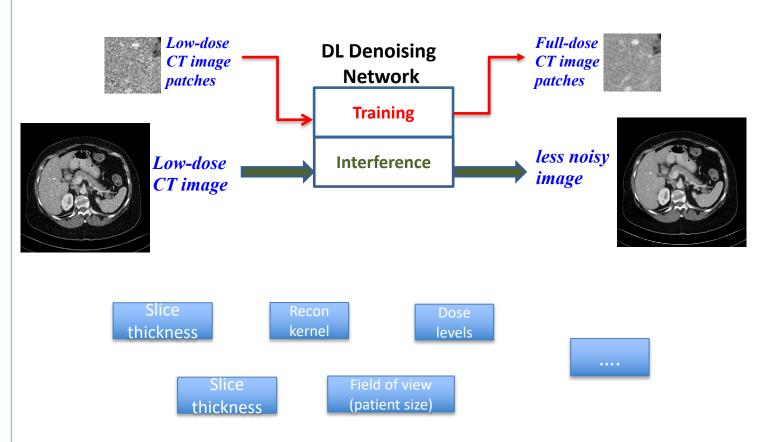
- Imaging aspect
 - CT systems
 - Acquisition parameters
 - Reconstruction parameters
- Patient aspect
 - Body parts
 - Patient populations
 - Pathological features

- What are the major impacting parameters?
- What is the underlying data distribution shift?

Least Burdensome

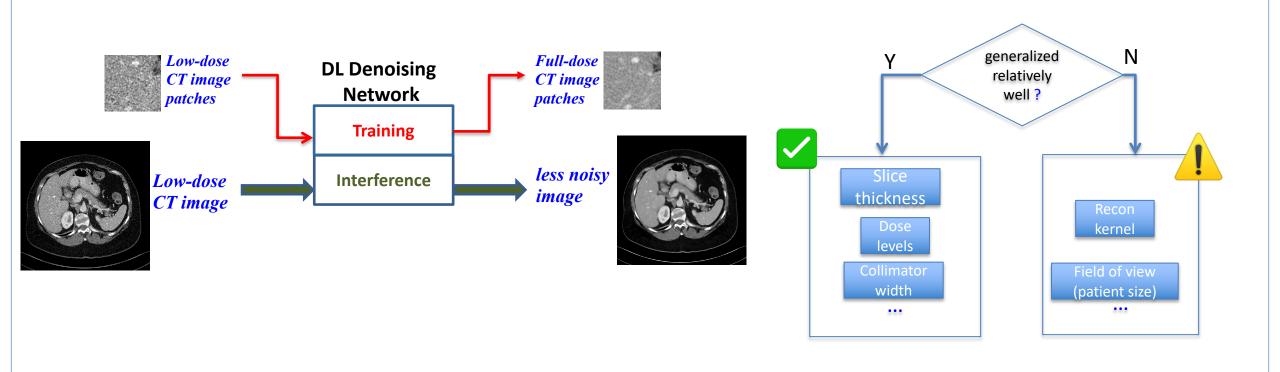
The **minimum** amount of information **necessary** to **adequately** address a relevant regulatory question or issue through the **most efficient** manner **at the right time**.

GUIDANCE DOCUMENT


The Least Burdensome Provisions: Concept and Principles

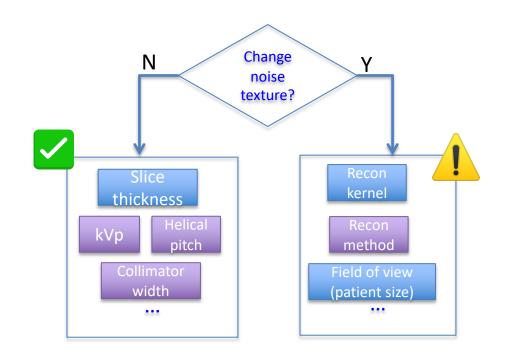
Guidance for Industry and FDA Staff

FEBRUARY 2019


1. Generalizability in CT imaging parameters

Zeng et. al., MedPhys 2021: Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel and slice thickness Huber et. al., JCAT 2021: Evaluating a Convolutional Neural Network Noise Reduction Method When Applied to CT Images Reconstructed Differently Than Training Data

1. Generalizability in CT imaging parameters

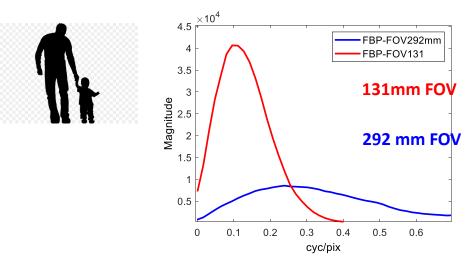

Zeng et. al., MedPhys 2021: Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel and slice thickness Huber et. al., JCAT 2021: Evaluating a Convolutional Neural Network Noise Reduction Method When Applied to CT Images Reconstructed Differently Than Training Data

FDA

Take-home message

- For a slice-based DL denoising network in low-dose CT
 - Noise texture, characterized by pNPS, of the input image is one underlying factor affecting its generalizability.
 - (**pNPS**: Pixel-wise noise power spectrum)

FD/

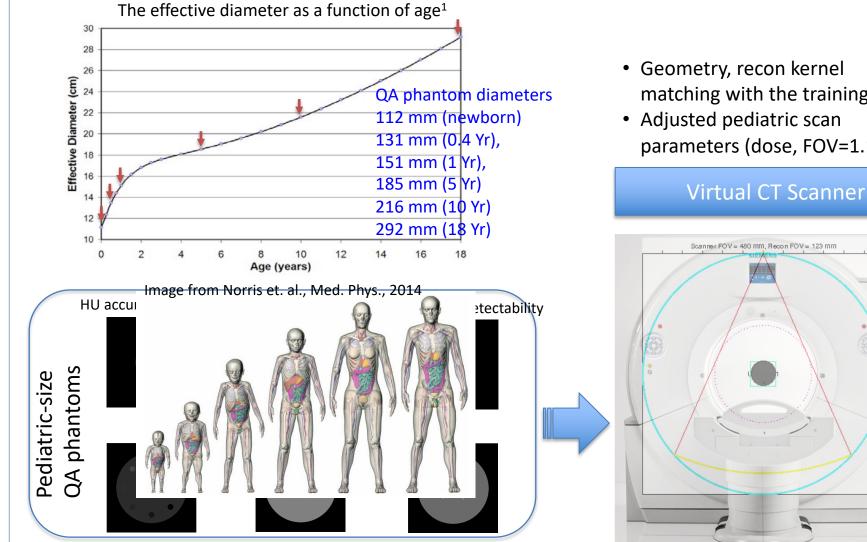

2. Generalizability in pediatric populations

pNPS

FDA

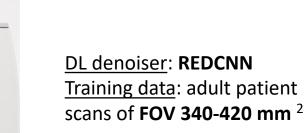
- Does DLR benefit pediatric scans similarly as it does in adult scans?
 - DLR is mostly trained with adult CT scans.
 - CT images with smaller recon FOV have different noise texture,

likely reducing the effectiveness of DLR.


1. **Brady et. al., Radiology 2021**: Improving Image Quality and Reducing Radiation Dose for Pediatric CT by Using Deep Learning Reconstruction

2. Yoon et. al., BMC Med. Imag. 2021: Image quality assessment of pediatric chest and abdomen CT by deep learning reconstruction

Both studies concluded **Positive benefits** of using DLR in pediatric CT.

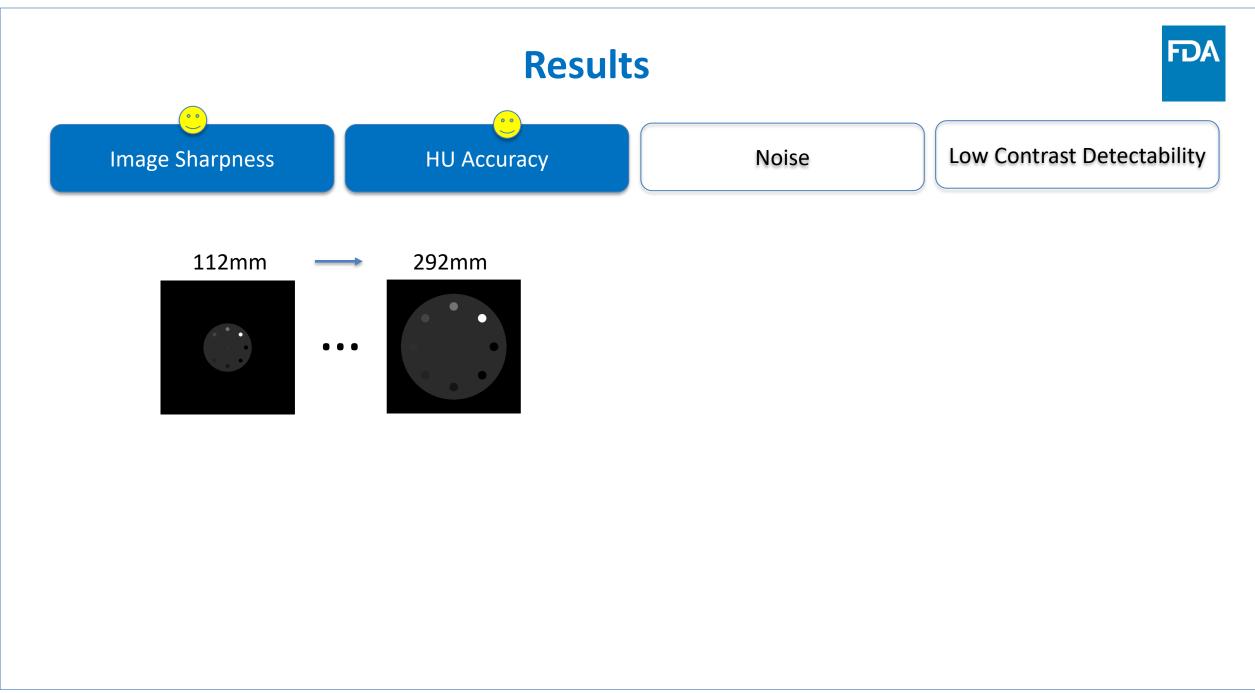

Great postmarket studies!

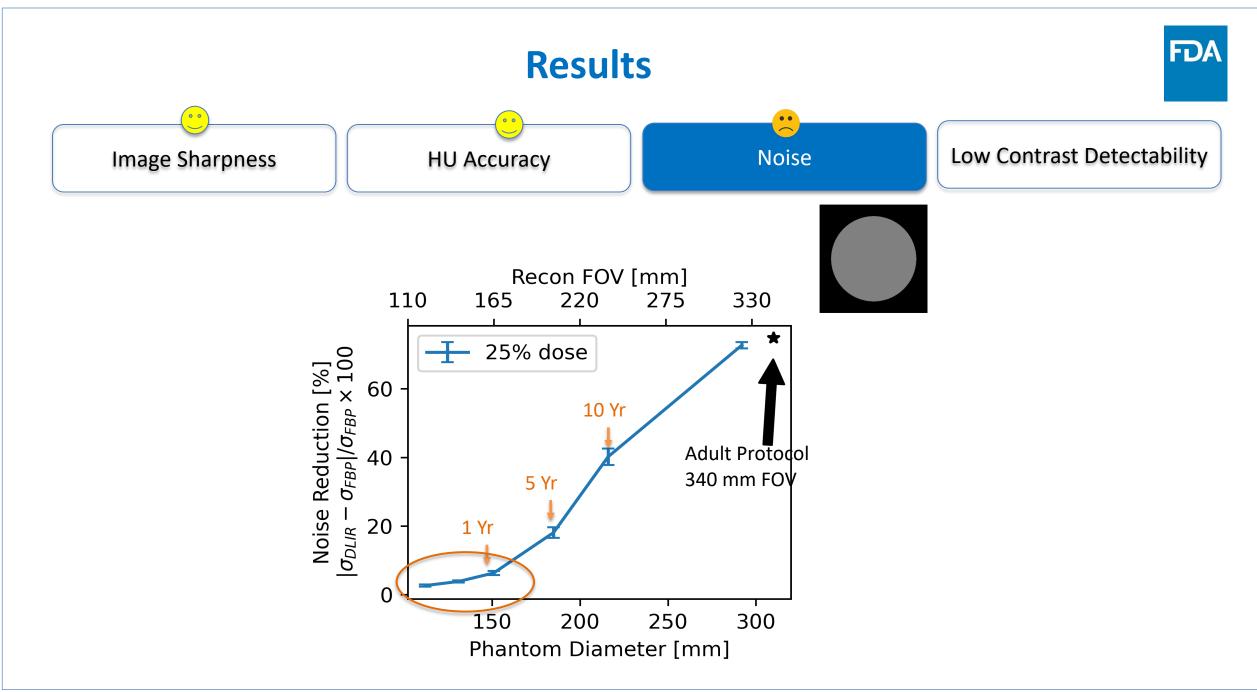
Development of In silico methods for evaluating DLR performance in pediatric CT

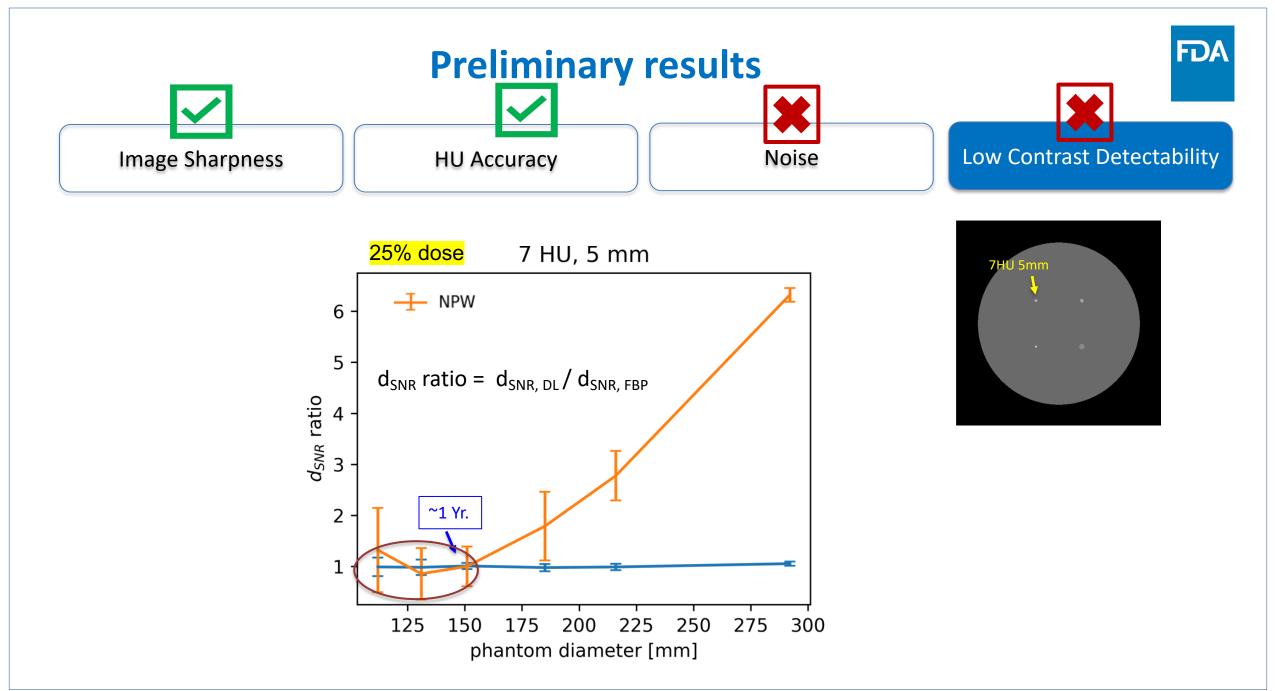
matching with the training data

parameters (dose, FOV=1.1D)

SOMATOM Definition Flash

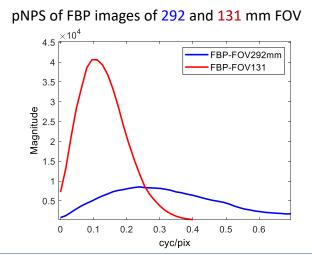



1. AAPM TG204 report: Size specific dose estimates for pediatric and adult body CT examinations, 2011


2. LDCT Grand Challenge: https://www.aapm.org/GrandChallenge/LowDoseCT/

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

FDA

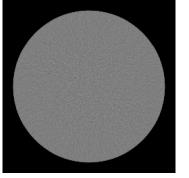


- DLR, if trained exclusively with adult patient data, may lose benefit on CT scans of small pediatric patients (1 yr and under).
 - Noise texture substantially changes with a very small reconstruction FOV.
 - Data augmentation to include small-FOV noise features in training, or separately trained model for small-FOV scans.

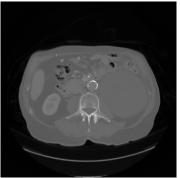
3. Generalizability in testing backgrounds

- The problem:
 - DLR is usually not trained with QA phantom images.
 - Do image quality (IQ) performances measured using the QA phantoms generalize well in patient images?
- Methods
 - Two types of image backgrounds
 - IQ measures: noise, edge-based MTF..
- Preliminary findings
 - MTF performance was similar between the two backgrounds
 - Noise performance could be quite different between the two backgrounds for some DL denoising models.

Conference Presentation

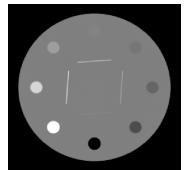

Bench testing performance of deep learning-based CT image denoising methods: influence of

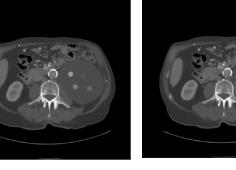
object background on image sharpness and noise texture


Rongping Zeng, Prabhat KC, Brandon Nelson

23 February 2023 • 2:50 PM - 3:10 PM PST | Town & Country A | Part of SPIE Medical Imaging

Uniform Bkg.

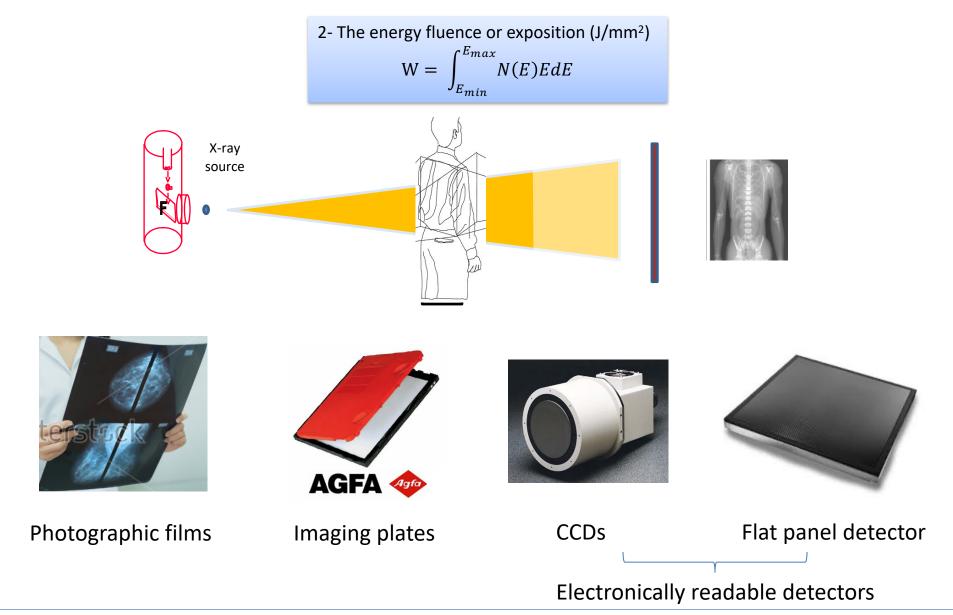

Anatomical Bkg.



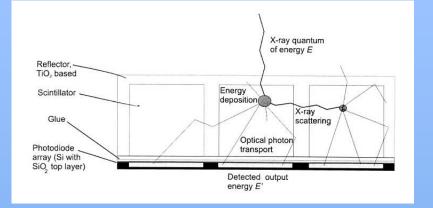
Test Objects in Uniform Bkg.

Test Objects in Anatomical Bkg.

FD



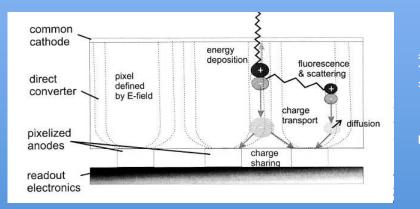
Outline


- 1. Introduction
- 2. AI/ML Image Processing Software regulatory Pathway and Considerations
- 3. Regulatory Science Research at FDA: Deep Learning Image Reconstruction and Denoising in CT
- 4. Considerations and Regulatory Science Research at FDA: Evaluating Imaging Systems with Photon Counting Detectors

FD/

Energy integrated X-ray detectors

X-Ray Energy Integrating Detector

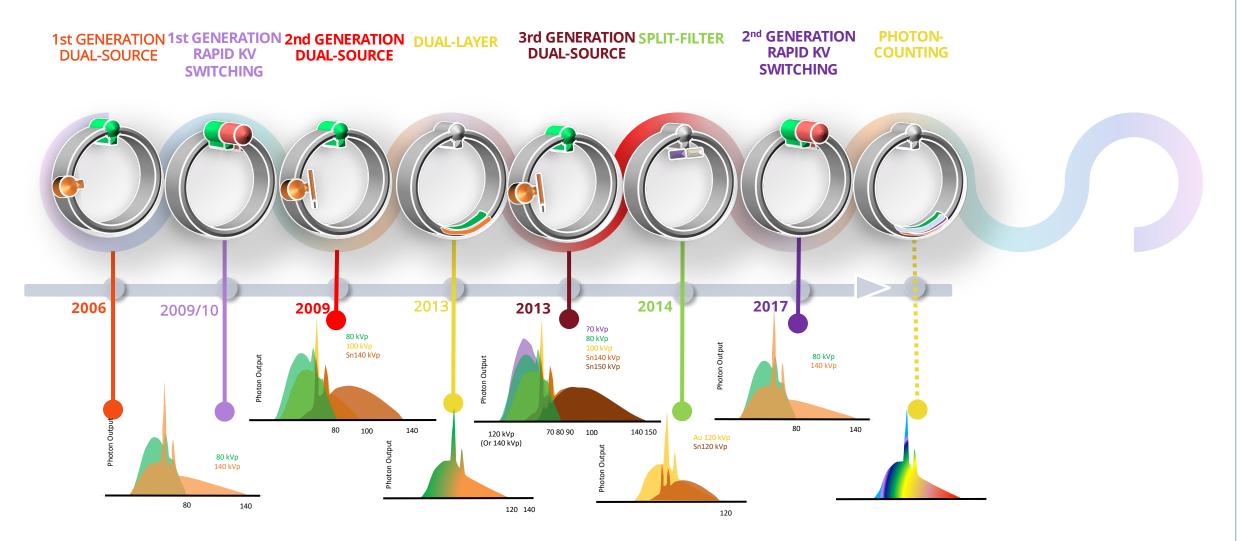

Energy Integrating Detector

Photon Counting Detector

Σ

X-Ray Photon Counting Detector

 $d_i = \sum_{i,j} r_{i,j}$ for i = 1, ..., N, and where $\{\tau_i\}$


Energy (keV) Energy (keV) Energy

OSEL Accelerating patient access to innovative, sale, and

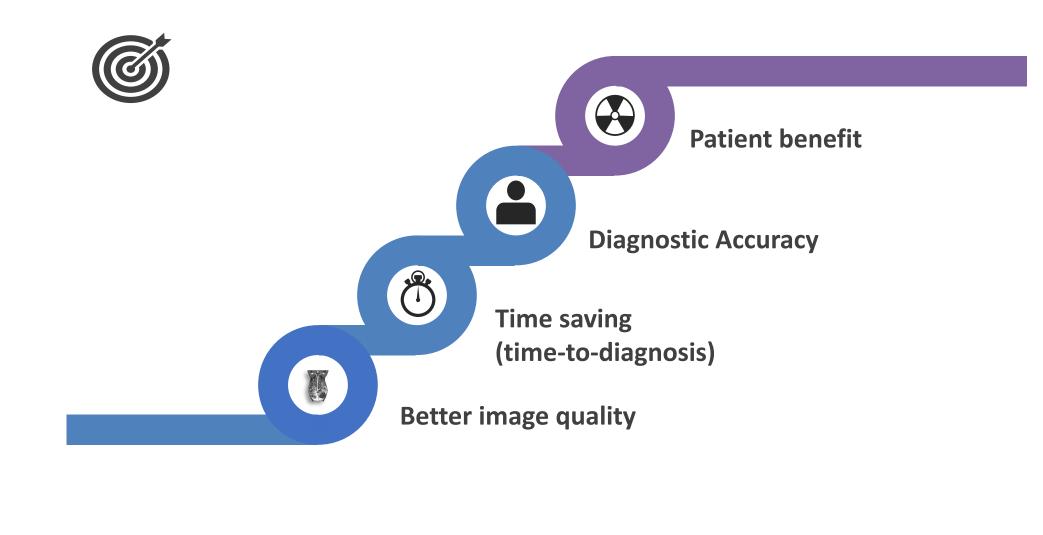
regulatory science

Spectral x-ray imaging Techniques

Dushyant V Sahani, CERN 2022

Improved IQ, Workflow and Material discrimination capabilities

Spectral x-ray imaging Techniques

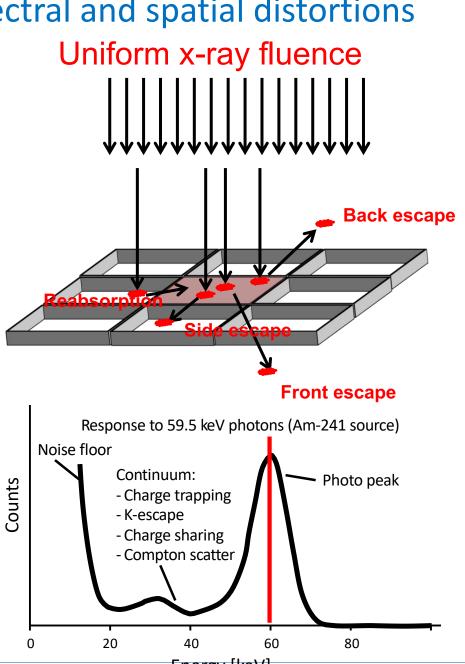

Techniques with photon counting detector

- No electronic noise
- Better spatial resolution
- Better SNR
- Shorter acquisition + Lower dose to the patient
- More than three Material-specific imaging can be generated

Dual-energy limitations:

- Spatial Resolution and Dose similar to conventional CT
- Very low contribution of low energy Xrays that contain most of the contrast information.
- Electronic noise can have a significant contribution to the total signal at low doses or in high attenuation
- body areas.

PCD-CT potential value

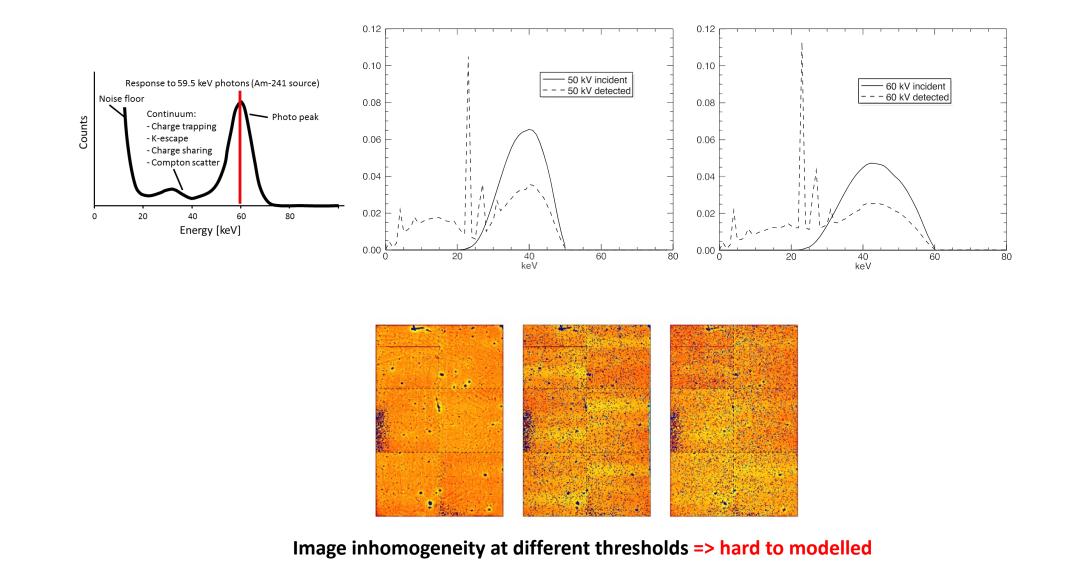

Current Photon-counting CT Projects Targeted Toward Full-Body Clinical CT

Company	Detector Material	Detector element size ()	
Samsung or Neurologica: OmniTom Elite platform portable PCD CT system	CdTe	<mark>1.25 mm and 0.625 mm</mark>	
Canon Aquilion ONE ViSION (PCCT prototype)	CdZnTe	?	
GE Healthcare, Spectral photon-counting CT	CdZnTe	0.5 x 0.5 mm ²	
Medipix (CERN, Switzerland) and MARS Bioimaging (Christchurch, New Zealand) Spectral photon-counting CT	CdZnTe	0.11 x 0.11 mm ²	
Philips Healthcare, spectral photon-counting CT	CdZnTe	0.5 x 0.5 mm ²	
Siemens (USA), Spectral CT, NAEOTOM Alpha	<mark>CdTe</mark>	<mark>0.6 x 0.6 mm²</mark>	
Siemens (USA), Spectral mammography System, Micro Dose	Silicon strip	50 μm	
GE Healthcare + KTH Royal Institute of Technology and Prismatic Sensors (Sweden) Spectral CT	Silicon strip	0.5 x 0.4 mm ²	
Advanced-Breast-CT, AB-CT (Germany)	CdTe	100 μm	
		List Derived from Public Sources	

Photon counting detector: spectral and spatial distortions Uniform x-ray fluence

Sources of distortions:

- X-ray fluorescence (Escape)
- X-ray fluorescence (Re-absorption)
- Charge trapping
- Pulse-pileup
- Transmission without interacting
- Compton scattering effects
- Image inhomogeneities & non-counting pixels


Photon counting detector: spectral and spatial distortions

Sources of spectral distortions:

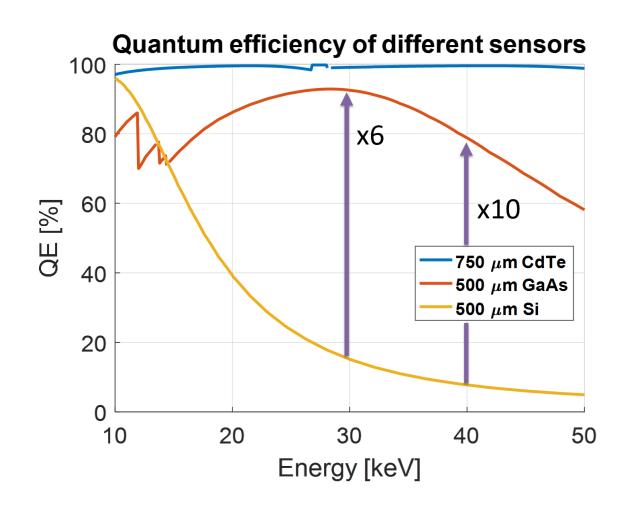
- X-ray fluorescence (Escape)
- X-ray fluorescence (Re-absorption)
- Charge trapping
- Pulse-pileup
- Transmission without interacting
- Compton scattering effects
- Image inhomogeneities & non-counting pixels

Photon counting detector: spectral and spatial distortions

Photon counting detector: spectral and spatial distortions

Photon Counting Detectors (PCD) - Unique Considerations:

Energy-Dependent Performance: The performance of PCDs can vary in several ways due to energy dependency.


- Pixel Variation within the same acquired image.
- Patient Variation
- Irradiation Condition Variation (kVp, filtration, and mAs).

Performance Test Adjustment:

to adapt standard performance tests traditionally used for conventional systems to assess the effectiveness of PCDs appropriately.

Quantum efficiency (QE)

- <u>Silicon (Z=14)</u>
- ✓ Very mature technology
- x Relatively low Z

Gallium Arsenide (Z=31,33)

- Good charge collection properties
- Fluorescence around 10 keV
- x Crystal not widely available
- Crystal thickness (<0.5 mm) => low
 Quantum efficiency (>50 keV)

Cadmium Telluride (Z=48,52)

- ✓ High absorption efficiency <100 keV</p>
- Crystal quality is improving, but it is available only in small wafers
- x Polarization issues at high photon fluxes (improving over the last years)
- x Fluorescence at 23 and 27 keV

Performance evaluation of Photon counting detector

Fundamental properties of photon-counting detector should be provided and include:

- 1. Detector resolution, Noise property: MTF, DQE
- 2. Count rate Vs current curve
- 3. Pulse pileup or maximum count rate
- 4. Lag or residual signal level from prior exposures that can be caused by polarization effects
- 5. Stability with time across the day and room temperature because CT scans can create a lot of heat
- 6. Spectral resolution
- 7. Bad pixel map

. . .

Quantitative image quality evaluation for photon counting CT through phantom studies

Bench testing performance:

- CT Number Accuracy at different mAs and kVp (Spectral resolution can be affected by fluence)
- Contrast-to-Noise Ratios (CNR)
- Uniformity

. . .

- Slice Sensitivity Profile (SSP)
- Modulation Transfer Function (MTF)
- Low contrast Resolution
- Standard Deviation of Noise (SD) in Midplane
- Standard Deviation of Noise (SD) along z-axis
- Noise Power Spectra (NPS)
- Visual inspection of image artifacts.
- Low Contrast Detectability (LCD) (dose claims)

Quantitative image quality evaluation for photon counting CT through phantom studies

<u>Quantitative measurements should be provided under the following conditions:</u>

- Different concentrations must be tested.
- Measurements must be taken at different realizations.
- Measurements must be taken using different phantom sizes acquired with different kVps (body rings).
- Different inserts' locations or distances from the center of the phantom must be tested.
- Measurements at different mAs must also be provided.
- A calibration process should be described in detail to ensure that the tests are representative and were not part of the algorithm development.

Regulatory Science Research at FDA: Evaluating Imaging Systems with Photon Counting Detectors

FDA

- 1. DIDSR photon counting x-ray imaging laboratory capabilities.
- 2. Characterization of a GaAs photon counting detector for mammography Collaboration with Dectris Ltd
- 3. Advancements in using computational modeling for device evaluation: PcTK updates
- 4. Assessing Spectral Efficiency in Quantitative Contrast-Enhanced Breast CT Using a CdTe Photon-Counting Detector

Available Commercial Photon Counting Detectors

Available Commercial Photon Counting Detectors						
Company	ASiC	Pixel Size (μm)	FOV size	Sensors	Thresholds	Price
Dectris - IBEX	custom	75/150	19.2 mm	CdTe/GaAs	2/4	
X-Spectrum	Medipix 3XR	55/110	14.1 mm	CdTe/GaAs	Up to 8	
XIE	Medipix 3XR	55/110	14.1 mm	CdTe/GaAs	Up to 8	
DxRay	custom	1.1 x 1.4 mm	70.4 x 5.6 mm	CdTe		
DxRay (edge-on Si)	custom	100	0.1 mm x 25.6 mm 0.1 mm x 10.24 mm	Si		
Varex	Xcounter Xthor	100	206mm x 6mm 350mm x 6mm 510mm x 6mm 80mm x 12.8mm 100mm x 12.8mm 100mm x 25.6mm 13mm x 26mm 26mm x 26mm 39mm x 26mm 52mm x 26mm	CdTe	2	
HEXITEC	HEXITEC ASIC	250	2 x2 cm	CdTe	MCA	

Available Commercial Photon Counting Detectors

Available Commercial Photon Counting Detectors						
Company	ASiC	Pixel Size (μm)	FOV size	Sensors	Thresholds	Price
Dectris - IBEX	custom	75/150	19.2 mm	CdTe/GaAs	2/4	
X-Spectrum	Medipix 3XR	55/110	14.1 mm	CdTe/GaAs	Up to 8	
XIE	Medipix 3XR	55/110	14.1 mm	CdTe/GaAs	Up to 8	
DxRay	custom	1.1 x 1.4 mm	70.4 x 5.6 mm	CdTe		
DxRay (edge-on Si)	custom	100	0.1 mm x 25.6 mm 0.1 mm x 10.24 mm	Si		
Varex	Xcounter Xthor	100	206mm x 6mm 350mm x 6mm 510mm x 6mm 80mm x 12.8mm 100mm x 12.8mm 100mm x 25.6mm 13mm x 26mm 26mm x 26mm 39mm x 26mm	CdTe	2	
HEXITEC	HEXITEC ASIC	250	2 x2 cm	CdTe	MCA	

Available in DIDSR

Available PCDs in DIDSR

pixel 3x3x1 mm³ Cadmium

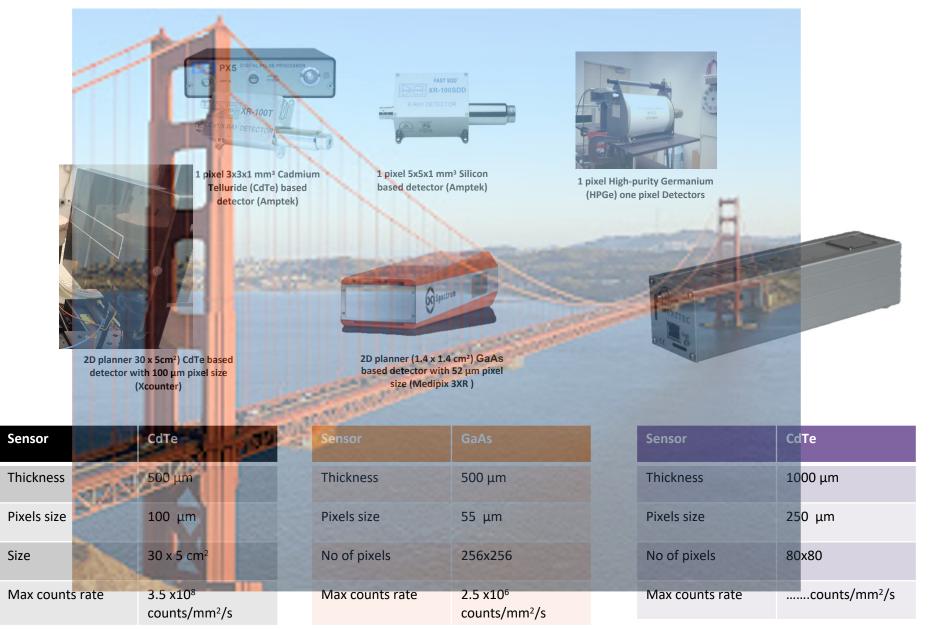
Telluride (CdTe) based

detector (Amptek)

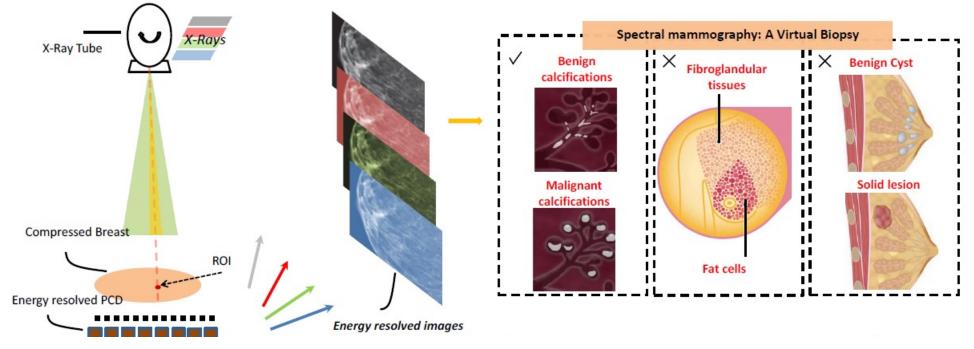
1 pixel 5x5x1 mm³ Silicon based detector (Amptek)

1 pixel High-purity Germanium (HPGe) one pixel Detectors

2D planner 30 x 5cm²) CdTe based detector with 100 μm pixel size (Xcounter)



2D planner (1.4 x 1.4 cm²) GaAs based detector with 52 μm pixel size (Medipix 3XR)



Sensor	CdTe	Se	ensor	GaAs	Sensor	CdTe
Thickness	500 μm	Tł	hickness	500 μm	Thickness	1000 µm
Pixels size	100 µm	Pi	ixels size	55 μm	Pixels size	250 μm
Size	30 x 5 cm ²	N	o of pixels	256x256	No of pixels	80x80
Max counts rate	3.5 x10 ⁸ counts/mm ² /s	М	lax counts rate	2.5 x10 ⁶ counts/mm ² /s	Max counts rate	counts/mm ² /s

Available PCDs in DIDSR

Imaging of the Breast with Photon-Counting Detectors

- To improve image contrast, noise, spatial resolution² and for dose reduction.
- To differentiate between malignant vs benign microcalcification clusters. Accurate quantitative estimation of breast density.
- Quantitative analysis of contrast-enhanced spectral mammography.
- To differentiate between solid lesion masses vs fat-filled cysts³.
- \Rightarrow Will reduce unnecessary breast biopsies and provide improved patient risk stratification.

1Glick, S. J. & Ghammraoui, B. in. Chap. Imaging of the Breast with Photon-Counting Detectors (CRC Press, 2020). 2Van Eeden D, D. P. F. Multi-Energy Computed Tomography Breast Imaging with Monte Carlo Simulations: Contrast-to-Noise-Based Image Weighting. *Medical Physics* 44, 106–112 (2019). 3Erhard, K. *et al.* Characterization of Cystic Lesions by Spectra Mammography Results of a Clinical Pilot Study. *Invest. Radiol.* 51, 340–347 (2016).

Collaboration with DECTRIS

- Study 1: Characterization of a GaAs photon counting detector for mammography
- Study 2: Contrast-enhanced spectral mammography with GaAs photon counting detector
- Study 3: Classification of breast microcalcifications with GaAs photon-counting spectral mammography using an inverse problem approach

[1] Investigating the feasibility of classifying breast microcalcifications using GaAs photon-counting spectral mammography B Ghammraoui, S Bader, T Thuering, SJ Glick - Medical Imaging 2022: Physics of Medical Imaging, 2022

[2] Classification of breast microcalcifications with GaAs photon-counting spectral mammography using an inverse problem approach B Ghammraoui, S Bader, T Thuering, SJ Glick Biomedical Physics & Engineering Express, 2023

Collaboration with DECTRIS

- Study 1: Characterization of a GaAs photon counting detector for mammography
- Study 2: Contrast-enhanced spectral mammography with GaAs photon counting detector
- Study 3: Classification of breast microcalcifications with GaAs photon-counting spectral mammography using an inverse problem approach

[1] Investigating the feasibility of classifying breast microcalcifications using GaAs photon-counting spectral mammography B Ghammraoui, S Bader, T Thuering, SJ Glick - Medical Imaging 2022: Physics of Medical Imaging, 2022

[2] Classification of breast microcalcifications with GaAs photon-counting spectral mammography using an inverse problem approach B Ghammraoui, S Bader, T Thuering, SJ Glick Biomedical Physics & Engineering Express, 2023

GaAs sensor for PCD breast imaging: Previous experimental studies

Study I: Characterization of a GaAs photon counting detector for mammography

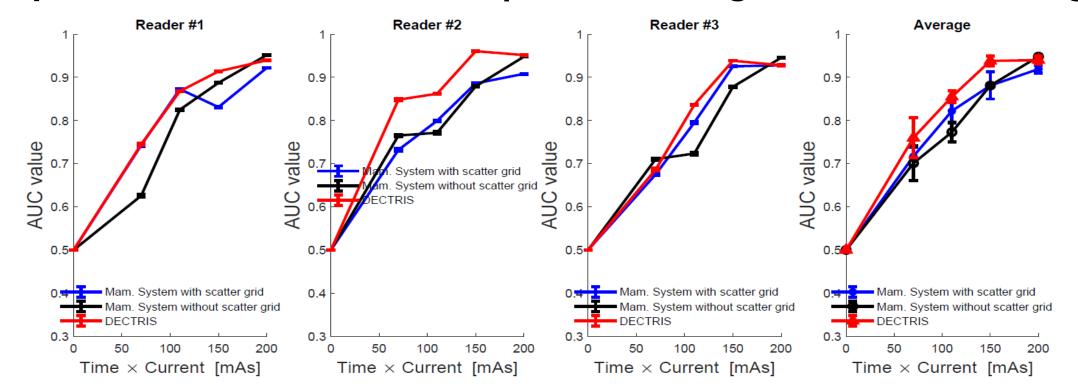
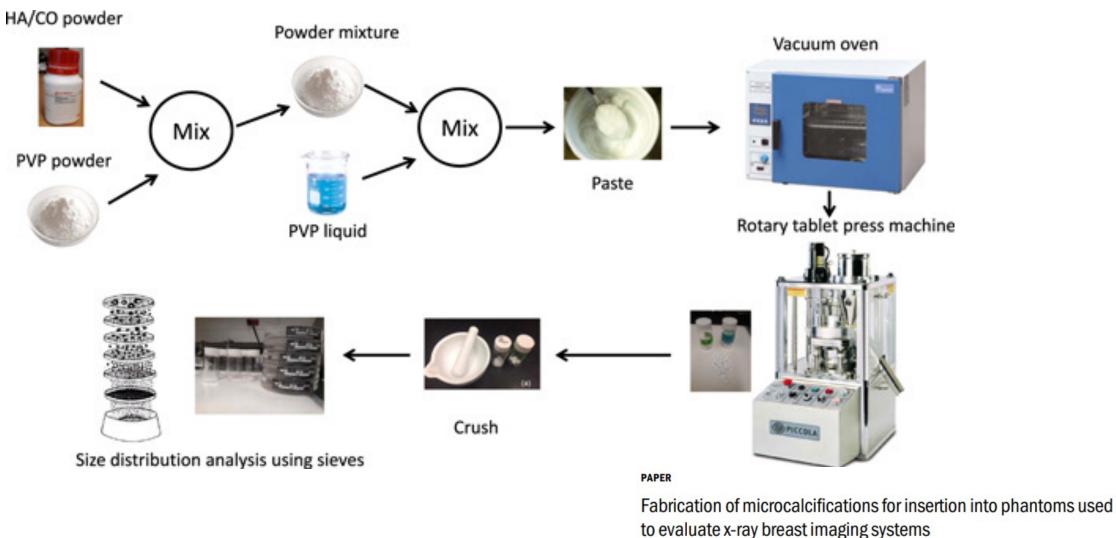
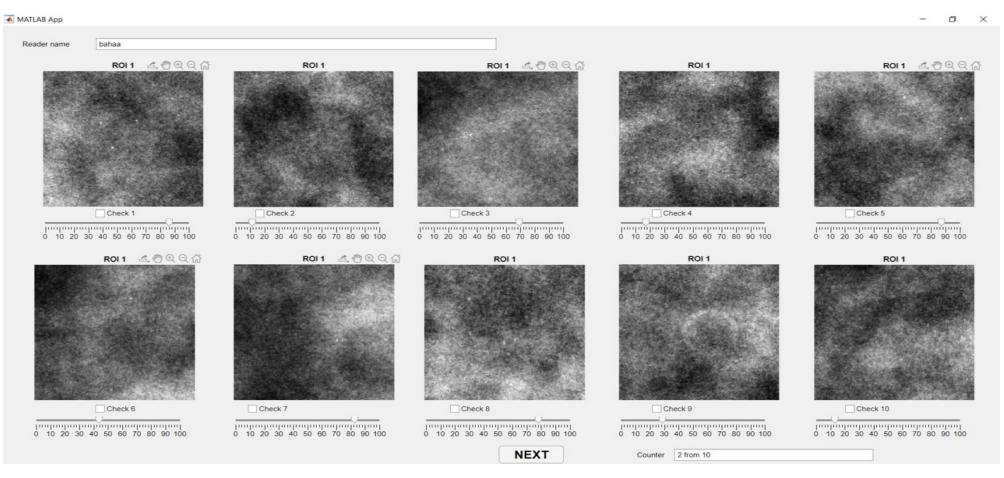


Figure: Microcalcification detectability: The area under ROC curves for the commercial digital mammography system and the mammography system with GaAs PCD.


In this study, GaAs spectral mammography demonstrated slightly improved or equivalent performance versus commercial mammography systems.

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

FDA


Regulatory science tool: Method for Fabrication of microcalcifications for insertion into phantoms used to evaluate x-ray breast imaging systems.

Bahaa Ghammraoui¹ , Ahmed Zidan², Alaadin Alayoubi², Aser Zidan^{2,3} and Stephen J Glick¹

Example deliverables: A GUI for human observer study with receiver operating characteristic (ROC) analysis.

Observers are asked to rate images using a continuous scale from 0 to 100, indicating their confidence that microcalcifications were in the image

FDA

Collaboration with Johns Hopkins University

- Study 1: Inclusion of a GaAs detector model in the Photon Counting Toolkit software for the study of breast imaging systems
- Study 2: Theoretical comparison and optimization of cadmium telluride and gallium arsenide photon-counting detectors for contrast-enhanced spectral mammography

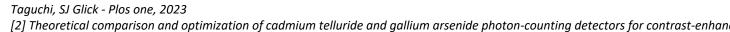
Number of modules	1 module with 1 GaAs sensor
Sensor	GaAs
Thickness	500 μm
Quantum efficiency	75% at 40 keV
Readout chip	Medipix3
Pixel size	55 × 55 μm
Count rate per pixel	200,000 counts/pixel/s (with count rate correction) 800, 000 counts /pixel/s (without count rate correction)
Energy range	5 keV – 80 keV
Energy resolution	1 keV
Max framing rate	2000 Hs (12 bit mode)

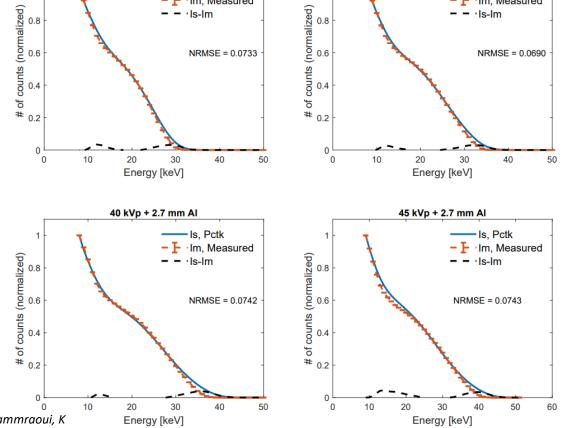
FD

Collaboration with Johns Hopkins University

- Study 1: Inclusion of a GaAs detector model in the Photon Counting Toolkit software for the study of breast imaging systems
- Study 2: Theoretical comparison and optimization of cadmium telluride and gallium arsenide photon-counting detectors for contrast-enhanced spectral mammography

Number of modules	1 module with 1 GaAs sensor
Sensor	GaAs
Thickness	500 µm
Quantum efficiency	75% at 40 keV
Readout chip	Medipix3
Pixel size	55 × 55 μm
Count rate per pixel	200,000 counts/pixel/s (with count rate correction) 800, 000 counts /pixel/s (without count rate correction)
Energy range	5 keV – 80 keV
Energy resolution	1 keV
Max framing rate	2000 Hs (12 bit mode)


FD


Collaboration with Johns Hopkin University

Study 1: Inclusion of a GaAs detector model in the • Photon Counting Toolkit software for the study of breast imaging systems

[1] Inclusion of a GaAs detector model in the Photon Counting Toolkit software for the study of breast imaging systems B Ghammraoui, K Taguchi, SJ Glick - Plos one, 2023

[2] Theoretical comparison and optimization of cadmium telluride and gallium arsenide photon-counting detectors for contrast-enhanced spectral mammography. C Schaeffer, B Ghammraoui, K Taguchi, SJ Glick - Journal of Medical Imaging, 2023

30 kVp + 2.7 mm Al

Is. Pctk

- - ·Is-Im

- F · Im, Measured

- Is, Pctk

- ·Is-Im

F ·Im, Measured

35 kVp + 2.7 mm Al

Updated PCTK

PHOTON COUNTING TOOLKIT (PCTK)

Welcome to the home of Photon Counting Toolkit (PcTK), a software tool to help your research on photon counting x-ray computed tomography (PCD-CT).

The PcTK is a Matlab program for a PCD model which takes into account spatio-energetic cross-talk and correlation between PCD pixels. We have developed PcTK in collaboration with Siemens Healthineers (Forchheim, Germany) and wish to help the community by making PcTK available to academic researchers.

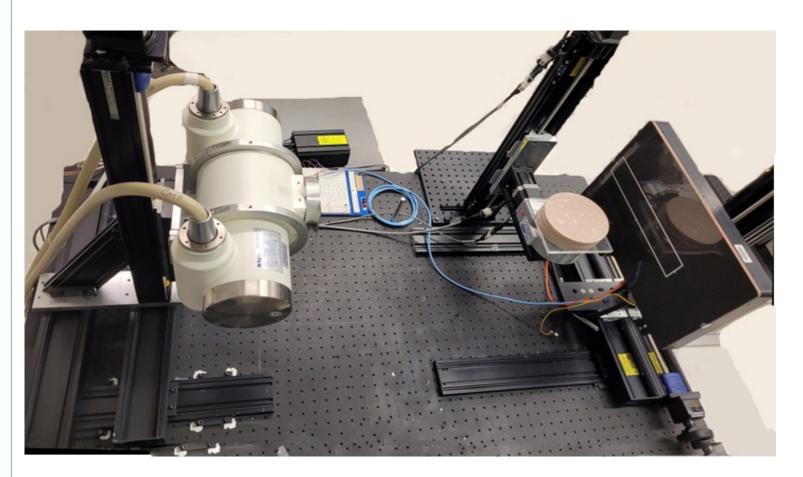
One can use PcTK to generate spectral response functions, with or without correlation

Search	C

RECENT POSTS

PCP paper published in Medical Physics

Editorial on photon counting CT published in January 2022 IEEE TRPMS issue


Third MEICC paper published in Medical Physics

Workflow ver 1 03a and PcTK

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

FD

X-Thor detector - PCD-CT benchtop

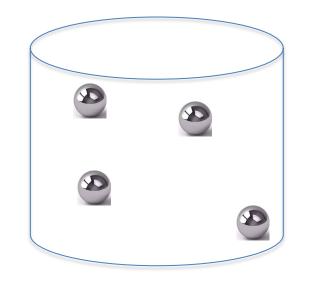
Sensor	CdTe
Pixel size	100 um
Size	5 x 30 cm**2
Thickness	750 um
Thresholds	Two
Operation Modes	Charge summing mode + standard mode

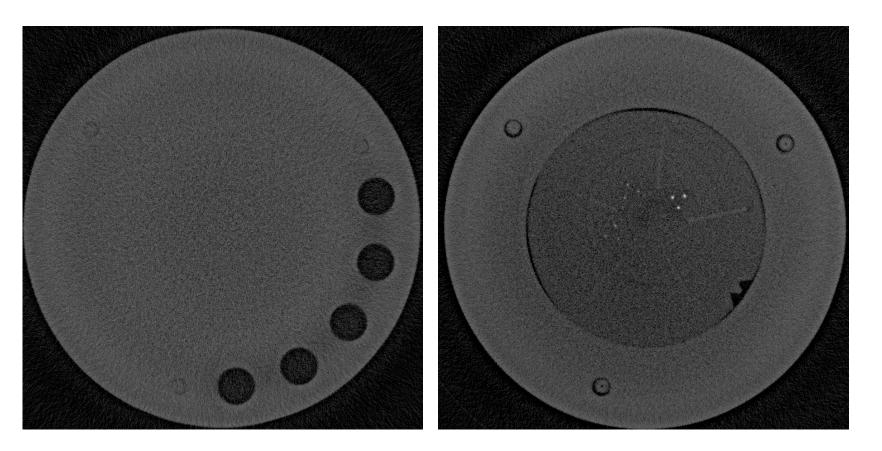
FDA

Development of an iterative method for the geometric calibration of a photon counting detector-based cone beam CT system. MU Ghani, A Makeev, JL Manus, SJ Glick... - Medical

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

- Study 1: An empirical method for the geometric calibration of a photon counting detector-based cone beam CT system
 - Standard method are not applicable due to the relatively small detector size.
 - Three figure of merits was used to iteratively find or evaluate the accurate geometrical parameters of a cone beam PCD-CT:

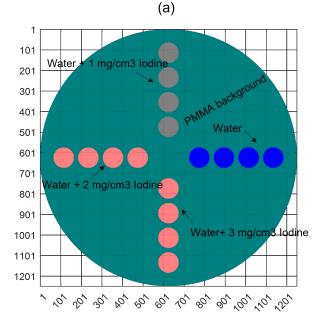

The sphericity (ψ) of a reconstructed BB :

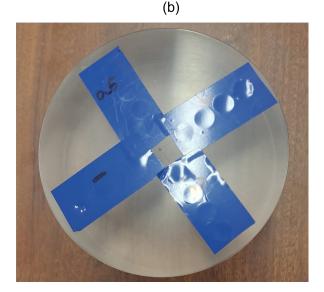

Imaging 2023: Physics of Medical Imaging, 2023

$$\psi = \frac{\pi^{1/3} \left(6V_p\right)^{2/3}}{4}$$

Symmetricity: Standard deviation among the estimated volumes of reconstructed BBs $\{V_{p1}, V_{p2}, ... V_{pi}, V_{pN}\}$

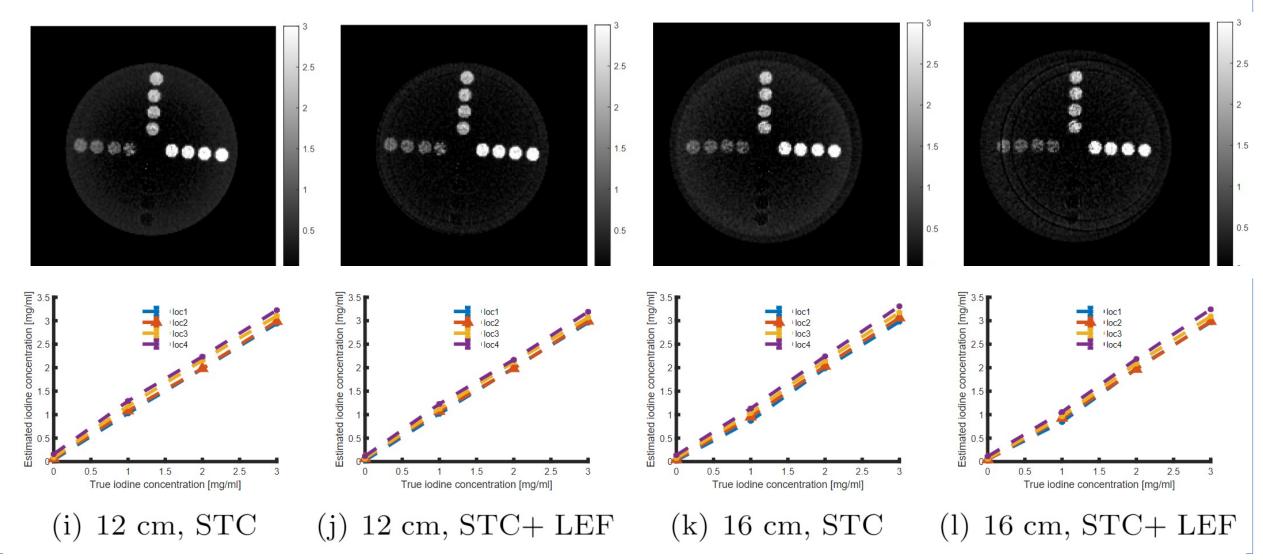
Physical phantom with ball-bearing spheres




Reconstructed images of the ACR phantom

FDA

 Study 2: Assessing Spectral Efficiency in Quantitative Contrast-Enhanced Breast CT Using a CdTe Photon-Counting Detector: An Experimental Approach



Physical phantom

Assessing Spectral Efficiency in Quantitative Contrast-Enhanced Breast CT Using a CdTe Photon-Counting Detector: An Experimental Approach. Bahaa Ghammraoui, MU Ghani, JL Manus, SJ Glick... - In preparation

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

• Study 1: Assessing Spectral Efficiency in Quantitative Contrast-Enhanced Breast CT Using a CdTe Photon-Counting Detector: An Experimental Approach

Figure of Merits

The performance of the quantitative methods under study was evaluated using four metrics:

• Root-mean-square (RMS) error between the estimated iodine concentration C_i and the known values C_i^{true} :

$$RMSE = \sqrt{\frac{\sum_{i=1}^{9} (C_i - C_i^{true})^2}{9}}$$
(7)

- The correlation C_r between the measured and known values.
- Precision of the iodine estimation, as measured by the population standard deviation (σ_{ci}) across different realizations and the standard deviation between locations (Σ_{ci}):

$$\sigma = \sqrt{\frac{\sum_{i=1}^{Nr} (C_i - C_i^{mr})^2}{Nr}} \\ \Sigma = \sqrt{\frac{\sum_{i=1}^{9} (C_i - C_i^{ml})^2}{9}}$$
(8)

Where C_i^{mr} and C_i^{ml} represent the mean values of the estimated iodine concentration across different realizations and across the three different locations of the disks with the same known concentration, respectively.

Assessing Spectral Efficiency in Quantitative Contrast-Enhanced Breast CT Using a CdTe Photon-Counting Detector: An Experimental Approach. Bahaa Ghammraoui, MU Ghani, JL Manus, SJ Glick... - In preparation

Acknowledgments

- I'd like to acknowledge:
 - Andreu Badal
 - Frank Samuelson
 - Rongping Zeng
 - Stephen J. Glick
 - Alexej Gossmann
 - Brandon Nelson
 - Prabhat KC
 - Jana Delfino
 - Miguel A. Lago

for providing slides and information used this presentation.

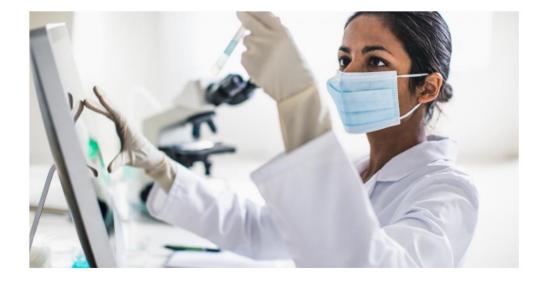
FDA

Regulatory Science Tools

CDRH's Office of Science and Engineering Labs (OSEL)

Contact at: OSEL_CDRH@fda.hhs.gov

Website:


https://www.fda.gov/medical-devices/science-and-research-medicaldevices/medical-device-regulatory-science-research-programsconducted-osel

Tools Catalog:

https://www.fda.gov/medical-devices/science-and-research-medicaldevices/catalog-regulatory-science-tools-help-assess-new-medicaldevices

Catalog of Regulatory Science Tools to Help Assess New Medical Devices

f Share 🎔 Tweet 🛛 in Linkedin 🖾 Email 🖨 Print

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

Thank you!

Questions?

For more information on medical device regulations:

https://www.fda.gov/training-and-continuing-education/cdrh-learn https://www.fda.gov/medical-devices/digital-health-center-excellence

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science