Differences in dosing strategies and perinatal outcomes for pregnant persons on buprenorphine compared with buprenorphine-naloxone

Background

- Opioid use disorder (OUD) is increasingly prevalent within the U.S., and paralleling that, within the pregnant population.
- The standard of care for OUD in pregnancy is medication for opioid use disorder (MOUD). MOUD has been shown to:
 - Reduce relapse risk
 - Increase adherence to prenatal care
 - Reduce the maternal and fetal complications described previously.
- There are two medications used for MOUD: buprenorphine & methadone. Buprenorphine (BUP) can be used alone or in combination with naloxone.
- There is insufficient data on buprenorphine-naloxone (BUP-NA) in pregnancy, and furthermore there is limited data to guide dosing strategies for medications for opioid use disorder (MOUD) beyond withdrawal symptoms.

Objectives

This study sought to compare perinatal outcomes between buprenorphine (BUP) and buprenorphine/naloxone (BUP-NA) along with evaluating dosing alterations in pregnancy.

Study Design

- Retrospective cohort study
- Inclusion criteria:
- Patients on buprenorphine type MOUD during their pregnancy
- Delivered at the study institution between January 2017 and July 2023
- 2 cohorts:
- Buprenorphine
- Buprenorphine-naloxone
- Statistical methods:
- \circ Statistical significance was defined as p < 0.05.
- Chi-square, McNemar test, student t-tests, nonparametric equivalents, multivariable regression analysis

Emily H. Stetler, MD, Tiffany Yang, MD, Oladunni Ogundipe, Lauren Stewart, MD, Chaitali Korgaonkar-Cherala, MD, Julia Kim, MD, Rakasa Pattanaik, BS, Erika Zambrano Alvarez, BA, Kimberly Herrera, MD, Diana Garretto, MD, David Garry, DO, Cassandra Heiselman, DO, MPH

- 255 patients were identified. 192 patient in the BUP group and 63 patients in the BUP-NA group
- No differences in maternal characteristics across groups (Table 1)
- No differences in perinatal outcomes were identified, except for active drug use during pregnancy (p = 0.04) (Table 2)
- Changes in dosing of MOUD occurred in 50.6% of patients. (Figure 1)
- More patients taking BUP-NA (31.7%) required an increase in dosage compared with BUP alone (31.7%) (p< 0.01)
- during pregnancy.
- Both groups saw an increase in split dosing strategy from the beginning of pregnancy to time of delivery. (Figure 1) \circ Initially, 50.5% of patients were on a split dosing strategy and by delivery 68% of patients requiring split dosing (p< 0.01). \circ There was no difference between group for split dosing at the beginning of pregnancy (p=) and at delivery (p=)
- No differences of dosage of buprenorphine (mg) at beginning of pregnancy (p=0.37) or at delivery between groups (p=0.30) (Figure 2)

Table 2: Perinatal	outcomes	compared	across BUP	and BUP	-NA

	Buprenorphine (n=192)	Buprenorphine/ naloxone (n=63)	P	
Pregnancy induced hypertension	26 (13.5%)	8 (12.7%)	0.86	SPLIT
Gestational diabetes	14 (7.3%)	2 (3.2%)	0.37	
Fetal Growth Restriction	9 (4.7%)	5 (7.9%)	0.34	
Active illicit drug use	52 (27 .1%)	9 (14.3%)	0.04	
Any OB complication	16 (8.3%)	6 (9.5%)	0.77	
PTB <37 weeks	23 (12.0%)	10 (15.9%)	0.43	
Cesarean Delivery	85 (45.0%)	26 (41.3%)	0.61	
Discharge dose (mg)	11.4 (±7.1)	12.7 (±7.6)	0.32	
Birth weight (g)	3060 (±598)	3022 (±623)	0.98	
Neonatal opioid withdrawal syndrome (NOWS)	148 (79.1%)	50 (79.4%)	0.97	
Pharmacologic treatment for NOWS	75 (40.1%)	25 (39.7%)	0.84	
NOWS requiring morphine	43 (22.4%)	12 (19%)	0.58	
Admitted to NICU	119 (62.6%)	35 (55.6%)	0.32	
Infant hospital LOS (days)	12.5 (±12.1)	10.4 (±12.0)	0.48	

Results

• The frequency of weaning between the two groups (p=0.523) was similar with the majority of the cohort (73.5%) not attempting wean

Figure 1: Dosing compared across BUP and BUP-NA

Figure 2: Dose requirements across BUP and BUP-NA

Age (year

White

Governm

Multigravi

BMI (kg/m

Any mate

Psychiatric

PNC initiat

Pregnancy Prescribing patients

Table 1: Maternal characteristics compared across BUP and BUP-NA

	Buprenorphine (n=192)	Buprenorphine/ naloxone (n=63)	P
rs)	32.8 (±22.5)	31.7 (±4.1)	0.70
	171 (89.1%)	57 (90.5%)	0.75
ent Insurance	153 (82.3%)	56 (90.3%)	0.13
da	162 (84.4%)	54 (85.7%)	0.80
²)	31.0 (±6.3)	29.8 (±4.6)	0.09
rnal co-morbidity	50 (26.0%)	18 (28.6%)	0.69
c Medication	89 (46.4%)	32 (50.8%)	0.54
tion in first trimester	120 (71.0%)	33 (57.9%)	0.07

Conclusion

• Perinatal outcomes including NOWS were similar between BUP and BUP-NA in our cohort, supporting the growing literature of safety of BUP-NA in pregnancy.

• The majority of patients on any buprenorphine derived MOUD required split dosing strategies in pregnancy.

 Patients taking BUP-NA may need increased dosages during pregnancy compared to patients taking BUP.

References

ACOG Committee Opinion #711: Opioid Use and Opioid Use Disorder in

Centers for Disease Control and Prevention Clinical Practice Guidelines: Opioid

Broussard CS, Rasmussen SA, Reefhuis J, Friedman JM, Jann MW, Riehle-Colarusso et al. Maternal treatment with opioid analgesics and risk for birth defects. National Birth Defects Prevention Study. Am J Obstet Gynecol 2011;204:314.e1–11 Dooley, J., Gerber-Finn, L., Antone, I., Guilfoyle, J., Blakelock, B., Balfour-Boehm, . Hopman, W. M., Jumah, N., & Kelly, L. (2016). Buprenorphine-naloxone use in pregnancy for treatment of opioid dependence: Retrospective cohort study of 30

O'Donnell, F. T., & Jackson, D. L. (2017). Opioid Use Disorder and Pregnancy. Missouri medicine, 114(3), 181–186.

QR Code

