

Matrix Metalloproteinases (MMPs) are Potential Markers for Preterm Birth (PTB)

Jay Davis M.D., Cassandra Heiselman D.O., David Baker M.D., Tatyana Peresleni Ph.D., David Garry D.O. Renaissance School of Medicine at Stony Brook University

Results

Background

- Recent literature demonstrated increased vaginal cytokine markers amongst high-risk women compared to a control group of low-risk women
- Matrix metalloproteinases (MMPs) are active in cellular processes including proliferation, pregnancy, and immune host defenses
- MMPs can serve as potential markers for labor onset
- MMPs have shown to be increased in cases of preterm labor
- Currently, no predictive markers for PTL have been identified in the cervico-vaginal fluid in the 1st trimester

Objectives

To compare the vaginal inflammatory markers MMPs and TIMPs in women who are high-risk for PTB compared to healthy, uncomplicated pregnancies

Study Design

- Prospective cohort study
- Time period: June 2016 through August 2017
- Inclusion criteria: Pregnant women with a history of preterm birth that were eligible for IM 170H-P and healthy pregnant women without a previous history of PTB as controls
- Exclusion criteria: Patients with vaginitis, pre-existing diabetes mellitus, pre-existing hypertension, or other immune altering conditions
- Vaginal rinse samples were collected at the initial visit between 11-16 WGA
- Samples were spun at 3000rpm x 10min, aliquoted, and stored at -80oC
- Aliquots were analyzed using semi-quantitative membrane assays for MMPs and TIMPs
- Post-hoc power analysis was performed
- Chi square and Fisher's exact test for categorical variables; two independent samples t-test for continuous variables

Demographics	High Risk (N=16)	Control (N=32)	P value	
Matemal Age (y)	31.9±4,3	29.8±5,3	0.08	M
Age > 35 years old	5 (31,3)	8 (25,0)	0.74	-
Race/ethnicity				MN
Caucasian	8 (50.0)	20 (62.5)	0.54	
African American	3 (18.8)	4 (12,5)	0.57	мм
Asian	0 (0.0)	3 (9.4)	0.54	MM
Hispanic	5 (32,3)	5 (15,6)	0.27	
BMI (Pre-pregnancy BMI, kg/m ²)	33,1±8,3	27,6±8,2	0.16	AIT
Obesity (BMI ≥ 30)	9 (56,3)	12 (37.5)	0.24	
Multiparity	18 (100,0)	22 (68.8)	0.02	- Dite
Smoker	1 (6.3)	4 (12.5)	0.65	TIM
Pregnancy outcomes				MIN
GA at delivery (w))	36.5±4.7	39.4 ± 1,4	0.01	TIN
Cesarean delivery	5 (37.5)	12 (37,5)	1.00	1 martin
Delivery < 37 weeks	\$ (31.3)	2 (6.3)	0.03	MM
Delivery < 34 weeks	3 (18.8)	0 (0.0)	0.03	
Birth weight (g)	2885,3±898.5	3480,7±473,3	0.02	MN
Apgar score at 5 minutes < 7	0 (0.0)	1 (3.1)	1.00	MMP
NICU admission	6 (37.5)	5 (25,6)	0.24	Data pres

• There were 48 women included: 16 with a prior spontaneous preterm birth and 32 healthy controls

- The baseline demographics for both groups were similar in age, race, and BMI (Table 1)
- Patients in the high-risk group were significantly more likely to deliver preterm at less than <37 weeks (5/16 [31.3%] high-risk vs 2/32 [6.3%] controls; p=0.03) and <34 weeks (3/16[18.8%] high-risk vs 0/32 [0%] controls; p=0.03)
- The metalloproteinase comparison results can be seen in Figure 1:
 - The vaginal MMP-9 value was significantly greater in the high-risk group than in the control group (integrative density 74.94 \pm 27.04% vs 49.38 \pm 31.08%; p=0.009)
 - The ratio of MMP-9:TIMP-1 was also 1.8 times higher in the high-risk group than in the control group (integrated density 2.17 \pm 2.78% vs 1.21 \pm 1.09%; p=0.099)

1. Initial visit MMP comparison between women that are isk and healthy control subjects.

	Control High Risk							
4	a a			a		1.50		
			-	-	*			
2								
		-						
1								
					+			
-						-		

Society for Maternal Fetal Medicine

Conclusion

- There is an increased MMP presence in vaginal washings of women at high-risk for preterm birth compared to healthy controls
- Vaginal MMP-9 may have potential as a marker for predicting preterm birth
- We believe our results, although on a limited group of patients, warrant further research on the role of MMPs in pregnancy and PTL

References

- Martin JA, Hamilton BE, Ventura SJ, Osterman MJ, Wilson EC, Mathews TJ. Births: final data for 2010. Natl Vital Stat Rep 2012;61(1):1-71.
- Errol R, Caughey A. Progesterone Supplementation and the Prevention of Preterm Birth. Rev Obstet Gynecol. 2011; 4(2): 60-72
- Sundrani DP, Chavan-Gautam PM, Pisal HR, et al. Matrix Metalloproteinase-1 and -9 in Human Placenta during Spontaneous Vaginal Delivery and Caesarean Sectioning in Preterm Pregnancy. PLoS One 2012;7(1): e29885.
- Garry DJ, Demishev M, Persad MD et al. Progesterone effects on vaginal cytokines in women with a history of preterm birth. PLoS One 2018.
- 5. Baker DA, Peresleni T, Christina K. Inflammatory markers in vestibulodynia. Ann Infect Dis Epidemiol 2016;1:1002.