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Practice Gaps

1. Metabolic acidosis or primary respiratory alkalosis can be an early sign of

neonatal hyperammonemia.

2. Metabolic disorders in a neonate can involve any organ system and can be

challenging to diagnose.

3. Early detection of treatable metabolic conditions is important for

prognosis.

4. A normal newborn screening result does not exclude ametabolic disorder.

Abstract

Metabolic disorders in a neonate can present with involvement of any

organ system and can be challenging to diagnose. A newborn can

present with an acute metabolic crisis such as hyperammonemia or

seizures needing immediate management, with a more chronic clinical

picture such as cholestatic liver disease, or with structural abnormalities

such as skeletal manifestations. Early detection of treatable metabolic

conditions is important to improve outcomes. Newborn screening has

facilitated early detection and initiation of therapy for many metabolic

disorders. However, normal testing does not rule out a metabolic

disorder and a high index of suspicion should remain when caring for any

critically ill neonate without a diagnosis. Whole exome sequencing (WES)

or whole genome sequencing (WGS) can be powerful tools in rapid

diagnosis of a potentially treatable metabolic condition in a critically ill

neonate. This review presents classic clinical presentations of neonatal

metabolic disorders and also highlights some uncommon neonatal

manifestations of metabolic disorders to improve the recognition and

diagnosis of these conditions.
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ABBREVIATIONS

FAOD fatty acid oxidation defect

FTT failure to thrive

HFI hereditary fructose intolerance

HIE hypoxic-ischemic encephalopathy

IUGR intrauterine growth restriction

LPI lysinuric protein intolerance

MMA methylmalonic acidemia

MRI magnetic resonance imaging

NBS newborn screening

PA propionic acidemia

RUSP Recommended Uniform Screening

Panel

WES whole exome sequencing

WGS whole genome sequencing
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Objectives After completing this article, readers should be able to:

1. Recognize the need to order a serum ammonia evaluation in a neonate

with an unexplained metabolic acidosis or respiratory alkalosis.

2. Recognize that a variety of symptoms such as a history of fetal hydrops,

hypoxic-ischemic encephalopathy, cardiomyopathy, liver failure,

cholestatic liver disease, skeletal dysplasia, or Escherichia coli sepsis can be

a clue to a metabolic disorder.

3. Describe treatable metabolic disorders that present during the neonatal

period.

INTRODUCTION

Inborn errors of metabolism, also known as biochemical

genetic disorders or metabolic disorders (referred to as such

in this article), are a group of thousands of rare genetic

conditions that can present at any age from the fetal period

to adulthood and can involve multiple organ systems.

(1)(2)(3) Neonatologists may only see a handful of newborns

withmetabolic disorders during their career. Although there

is no effective treatment for some metabolic disorders and

the prognosis can be poor, some conditions can be effec-

tively managed with dietary modifications, medications,

supplements, or organ transplantation. Early detection of

these treatable conditions is important to improve out-

comes. Therefore, neonatologists should have a high index

of suspicion for a metabolic disorder in any critically ill

neonate with an unusual or unexplained presentation. New-

born screening (NBS) has facilitated early detection and

initiation of therapy formanymetabolic disorders.However,

a normal test result does not rule out a metabolic disorder,

and a high index of suspicion should remain when caring

for any critically ill neonate without a diagnosis.

The purpose of this review is to summarize the classic

clinical presentations of neonatal metabolic disorders as

well as to highlight some uncommon neonatal manifesta-

tions of metabolic disorders to improve recognition of these

conditions. In this review, we focus on manifestations of

these disorders during the neonatal period; clinical presen-

tations after this period are beyond the scope of this review.

We will discuss symptoms that can indicate a metabolic

disorder rather than listing metabolic disorders and their

clinical presentations. We present several examples of met-

abolic disorders related to each clinical finding. For a com-

prehensive list of metabolic disorders associated with each

clinical sign, the reader is encouraged to refer to more com-

prehensive publications, many of which are referenced here.

NEONATAL HYPERAMMONEMIA AND METABOLIC
ACIDOSIS

In neonates, classic scenarios in which a metabolic disor-

der is more likely include those in which a neonate has

severe metabolic acidosis with an anion gap, lactic acidosis,

or hyperammonemia, which can also occur together.

Severe metabolic acidosis with an anion gap occurs when

a nonvolatile acid accumulates as a result of a block in a

metabolic pathway. An anion gap metabolic acidosis is

typical in neonates with organic acidemias such as meth-

ylmalonic acidemia (MMA) and propionic acidemia (PA) as

well as mitochondrial disorders in which lactic acid

accumulates.

Neonatal hyperammonemia results from either a pri-

mary or secondary defect in the urea cycle, which is

responsible for converting ammonia that is produced dur-

ing protein metabolism into blood urea nitrogen, which is

then excreted by the kidneys. Neonates with primary

defects in the urea cycle such as ornithine transcarbamylase

deficiency typically do not present with metabolic acidosis

but rather, have primary respiratory alkalosis resulting

from tachypnea. This tachypnea is thought to be caused

by stimulation of the central nervous system respiratory

center by the ammonium ion. (4)(5) In a neonate with

hyperammonemia and a primary respiratory alkalosis (pH

>7.45, low partial pressure of carbon dioxide [PCO2]), urea

cycle defects are highest on the differential. Neonatal hyper-

ammonemia with severe metabolic acidosis is a typical

presentation of organic acidemias such as MMA, PA,

and isovaleric acidemia. (6)(7) Neonates with fatty acid

oxidation defects (FAOD) may also present with neonatal

hyperammonemia and often have a history of low/unde-

tectable serum glucose. If the later is true, lipid adminis-

tration should be avoided pending diagnosis. Mitochondrial

disorders are a less common but possible cause of neonatal

hyperammonemia and should be considered if there is a
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TABLE 1. Metabolic Etiologies and Laboratory Evaluation of Neonatal
Hyperammonemia

ACIDOSIS VS ALKALOSIS ETIOLOGYa COMMENTS

DIAGNOSTIC/HELPFUL
BIOCHEMICAL
LABORATORY STUDIES

Neonatal
hyperammonemiaa

Metabolic acidosis (increased
anion gap)

Organic acidemias • Anion gap acidosis is
severe

• Urine organic acids
(diagnostic)

• MMA • MMA: often lactic acidosis • Plasma acylcarnitines
• PA • PA: at risk for

cardiomyopathy
• Plasma total and free
carnitine (secondary
carnitine deficiency)

• Isovaleric acidemia • Plasma amino acids
• Multiple carboxylase
deficiency

• Serum/plasma MMA level

• Multiple acyl-CoA
dehydrogenase deficiency

• Serum lactic acid

• 3-Hydroxymethylglutaryl-
CoA dehydrogenase
deficiency

• High BUN

• 3-Methylcrotonyl-CoA
carboxylase deficiency

• Gene sequencingb

Mitochondrial disorders See “Other” for features and
diagnostic studies for
mitochondrial disorders

Respiratory alkalosis (primary) Urea cycle defects • Typically very low BUN • Plasma amino acids
• NAGS deficiency • Hyperammonemia

typically severe in NAGS,
CPS, OTC and ASS
deficiency

• Urine orotic acid

• CPS deficiency • Hyperammonemia not
very common in arginase
deficiency

• Urine organic acids
(orotic)

• OTC deficiency
• Argininosuccinate
synthetase deficiency
(citrullinemia)

• Argininosuccinate lyase
deficiency

• Arginase deficiency
Amino acid transporter

deficiencies
• Only a minority of patients
with HHH or LPI do not
present during neonatal
period

• HHH and LPI: plasma
amino acids, urine amino
acids

• HHH syndrome
• LPI
• Transient
hyperammonemia of the
newborn

• Typically <36 weeks’
gestational age,
birthweight <2.5 kg,
respiratory distress,
presents <24 hours after
birth

• Typical diagnostic
metabolites of urea cycle
or other disorders are not
present

• May be severe and require
ammonia scavengers
and/or dialysis

Continued
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concurrent severe lactic acidosis. Neonates with organic acid-

emias, especiallyMMA, can also have lactic acidosis because of

secondary mitochondrial dysfunction (8)(9)(10); however, typ-

ically this acidosis is not as significant as that seen in patients

with a primarymitochondrial disorder. Table 1 provides a list of

conditions that may present with neonatal hyperammonemia

and diagnostic or helpful biochemical laboratory studies that

should be performed while initiating therapy.

Treatment of neonatal hyperammonemia is beyond the

scope of this review; however, keys to management, briefly,

are as follows:

• Provision of energy in the form of carbohydrate and lipids

to promote anabolism. Unless FAOD is suspected in

which case lipids should be avoided.
• Insulin administration if hyperglycemia develops

• Correction of dehydration
• Central catheter for high dextrose (>12.5%) concentration

intravenous fluids and frequent blood sampling

• Administration of an intravenous ammonia scavenger

(eg, sodium benzoate/sodium phenylacetate)

• Hemodialysis or continuous renal replacement therapy,

in some cases, to rapidly decrease ammonia levels

TABLE 1. (Continued)

ACIDOSIS VS ALKALOSIS ETIOLOGYa COMMENTS

DIAGNOSTIC/HELPFUL
BIOCHEMICAL
LABORATORY STUDIES

Otherc Fatty acid oxidation defects • Often severe
hypoglycemia on initial
presentation

• Plasma acylcarnitine
profile

• Carnitine transporter
deficiency

• Risk of cardiomyopathy
and cardiac arrhythmias

• Plasma total and free
carnitine

• Carnitine palmitoyl
transferase 2 deficiency

• Urine organic acids

• Carnitine acylcarnitine
translocase deficiency

• Gene sequencingb

• Long-chain 3-hydroxyacyl-
CoA dehydrogenase
deficiency

• Enzyme assay from
fibroblastsd

• Very-long-chain acyl-CoA
dehydrogenase deficiency

Mitochondrial disorders • Severe lactic acidosis,
multisystem involvement

• There are currently no
diagnostic biochemical
markers for
mitochondrial disorders

• Mitochondrial DNA
defects

• Genetic testing or
enzyme analysis may
lead to diagnosis

• A defect in one of the
multiple nuclear
mitochondrial genes

Pyruvate carboxylase
deficiency

• Lactic acidosis, ketosis,
hypoglycemia, FTT,
seizures

• Plasma amino acids

• Gene sequencing

HIHA • Fasting or protein (leucine)
sensitive hypoglycemia

• High insulin
• Gene sequencing

ASS¼ argininosuccinate synthetase; BUN¼blood urea nitrogen; CoA¼coenzyme A; CPS¼ carbamyl phosphate synthetase; FTT¼failure to thrive; HHH¼
Hyperornithinemia-hyperammonemia-homocitrullinemia; HIHA¼hyperinsulinism/hyperammonemia syndrome; LPI¼ lysinuric protein intolerance;
MMA¼methylmalonic acidemia; NAGS¼N-acetylglutamate synthetase; OTC¼ornithine transcarbamylase; PA¼propionic acidemia.
aThis is not a comprehensive list of all possible causes of neonatal hyperammonemia. For example, liver failure, portocaval shunt, and bacterial
colonization with urease-positive organisms may also lead to hyperammonemia. This table lists the most common metabolic causes of neonatal
hyperammonemia.
bGene sequencing is typically done after a diagnosis has already been made via biochemical testing for confirmation and genetic counseling.
cThese conditions can present with either metabolic acidosis or respiratory alkalosis depending on other contributing factors such as sepsis or dehydration,
but often neither metabolic acidosis nor respiratory alkalosis have the same degree of severity as do organic acidemias or urea cycle defects, respectively.
dSkin biopsy for fibroblast culture and subsequent enzyme assay from fibroblasts may be necessary in cases in which biochemical and genetic testing do
not provide a definitive diagnosis.
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For further review of the management of hyperammo-

nemia, we refer the reader to publications focused on the

management of neonatal hyperammonemia. (6)(11)(12)(13)(14)

Hyperammonemia is one of the most common neonatal

presentations of metabolic disorders that will go undetected

unless the ammonia level is checked. A timely diagnosis and

initiation of therapy to lower ammonia levels are vital for

prognosis.

FETAL MANIFESTATIONS OF NEONATAL METABOLIC

DISORDERS

Nonimmune Fetal Hydrops
Because of early diagnosis and treatment of rhesus (Rh)

isoimmunization, nonimmune causes now account for the

majority of fetal hydrops cases. (15)(16) Metabolic disorders

account for about 1% to 15% of nonimmune fetal hydrops.

(15)(16)(17) In particular, patients with storage disorders

such as mucopolysaccharidosis type VII (Sly syndrome),

Gaucher disease, infantile galactosialidosis, and transaldo-

lase deficiency can present with fetal hydrops. In a fetus with

hydrops or a neonate with a history of fetal hydrops, a

metabolic cause should be sought if more common condi-

tions such as fetal anemia, an infection, a chromosomal

disorder, and cardiac abnormalities have been ruled out. A

metabolic disorder should also be considered if nonim-

mune hydrops is also associated with other features of

storage disorders such as a large placenta, hepatospleno-

megaly, or coarse features.

Intrauterine Growth Restriction
Intrauterine growth restriction (IUGR) has multiple etiologic

factors, ranging from placental insufficiency to chromosomal/

genetic and infectious causes. Metabolic disorders that can

lead to IUGR include mitochondrial disorders (energy

deficiency), peroxisomal disorders, disorders of cobalamin

metabolism, and cholesterol biosynthesis defects. Typically,

however, IUGR is not the only clinical manifestation of

these conditions.

In the following sections, several clinical findings are

presented based on organ systems; if the reason for these

findings is unknown, the clinician should consider a met-

abolic disorder. Some of the clinical findings presented

often have a fetal origin and may be detected prenatally,

especially those that involve structural changes.

NEUROLOGIC

Encephalopathy
Neonatal encephalopathy is defined as abnormal brain

function in a newborn manifested by decreased level of

consciousness and responsiveness, such as a poor suck.

Hypoxic-ischemic encephalopathy (HIE) is among the most

common causes of neonatal encephalopathy. Metabolic

disorders can manifest similarly to, and mimic, HIE. (18)

In general, neonates with HIE are symptomatic since birth

whereas newborns with metabolic disorders typically

become symptomatic after an initial normal period. How-

ever, some metabolic disorders, such as mitochondrial

disorders, may potentially cause a lower tolerance of stress

during labor and the affected neonate may present with a

clinical picture similar to HIE.

Neonatal seizures, as a result of metabolic disorders, may

also cause neonatal encephalopathy and manifest immedi-

ately at birth (see next section). Brain magnetic resonance

imaging (MRI) may help distinguish between HIE and

metabolic causes of encephalopathy because HIE causes

typical radiographic patterns of brain injury. (19)(20)(21) A

metabolic cause should be considered in cases of neonatal

encephalopathy if an acute perinatal event is absent (making

HIE less likely), symptoms started after an initial normal

period, or seizures persist without an intracranial abnor-

mality. Neonatal hyperammonemia and related conditions

(Table 1), maple syrup urine disease, and conditions that

cause neonatal seizures (Table 2) should be considered

when metabolic causes of neonatal encephalopathy are

being considered.

Seizures
Most neonatal seizures are caused by acute brain injury, and

brain MRIs can often determine the cause (eg, structural

brain abnormality, intracranial bleeding, HIE). (22)(23)

However, brain MRI findings in some metabolic disorders,

such as molybdenum cofactor deficiency, can mimic that of

HIE. (24)(25) Table 2 lists metabolic causes of neonatal

seizures with treatable or potentially treatable conditions

marked with an asterisk. Most of the time, however, therapy

should be initiated before the onset of symptoms or very

early in the course of symptoms (preferably before brain

MRI findings are apparent) such as inmolybdenum cofactor

deficiency and serine biosynthesis defects. (26)(27)(28)

Treatment before the onset of symptoms can be possible

for disorders detected on NBS or if a diagnosis has been

made prenatally (eg, because of a history of metabolic

disorder in a previous child). Metabolic disorders should

be strongly considered if the brain MRI in a neonate with
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seizures does not demonstrate a structural anomaly or acute

injury, if the perinatal history is normal, and especially if

electroencephalography shows burst suppression. Identify-

ing treatable conditions early is important for prognosis.

Diagnosis often requires sampling of cerebrospinal fluid for

neurotransmitters or amino acids and/or genetic testing

(gene panels for neonatal seizures, whole exome sequenc-

ing [WES], whole genome sequencing [WGS]).

Microcephaly
Although many metabolic disorders cause microcephaly

postnatally, microcephaly at birth can be found in neonates

with mitochondrial disorders, pyruvate metabolism disor-

ders, cobalamin synthesis defects, serine synthesis defects

(also a cause of neonatal seizures), and sterol synthesis

defects. (29) For additional information, refer to the section

on maternal conditions affecting a neonate.

Hypotonia
Neonatal hypotonia is a nonspecific symptom that can arise

from an abnormality in the central nervous system, periph-

eral nervous system, neuromuscular junction, muscle itself,

or a metabolic or electrolyte abnormality. If the cause is

metabolic, possible disorders include mitochondrial disor-

ders, peroxisomal disorders, and Pompe disease.

Hydrocephalus
Hydrocephalus is not a common presentation of ametabolic

disorder in a neonate but has been described in patients

with cobalamin C and cobalamin D disorders. (30)(31)(32)

OPHTHALMOLOGIC

Patients with metabolic diseases often need to be followed

for ophthalmologic manifestations. Furthermore, the oph-

thalmologic evaluation in a sick neonate may lead to a

diagnosis of a metabolic disorder. Neonates with metabolic

disease can have eye abnormalities because of an accumu-

lation of an abnormal metabolic product (eg, galactosemia,

mucopolysaccharidoses) or a deficient energy metabolism

(mitochondrial diseases). Ocular manifestations of meta-

bolic disorders include corneal clouding (mucopolysacchar-

idoses, mucolipidoses), congenital cataract (see next

section), and cherry red spot (Niemann-Pick A and B,

galactosialidoses, gangliosidoses). (2)(33)

TABLE 2. Metabolic Causes of Neonatal Seizures

Neonatal seizures Typically present with isolated
neonatal seizures

Cerebral folate deficiency (cerebral folate receptor gene FOLR1)*
Creatine metabolism disorders (various genes)*
Folinic acid responsive seizures*
Glycine Encephalopathy (also known as non-ketotic hyperglycinemia)a,*
Glucose Transporter (GLUT1) deficiency*
Molybdenum cofactor deficiency (3 genes)b,*
Pyridoxal (activated B6) responsive seizures (pyridoxal phosphate-binding

protein gene PLBP, pyridoxamine 5-prime-phosphate oxidase gene PNPO)*
Pyridoxine (B6) responsive seizures (ALDH7A1 gene)*
Serine biosynthesis defectc,*
Sulfite oxidase deficiency

Typically present with other
systemic symptoms (such as
metabolic acidosis, lactic
acidosis, hyperammonemia)

Biotinidase deficiency (though does not typically present in neonatal period)*
Fatty acid oxidation defects (if severe hypoglycemia)*
Maple syrup urine disease*
Mitochondrial disorders (severe lactic acidosis, often multisystem involvement)
Organic acidemias (eg, methylmalonic acidemia, propionic acidemia, multiple

carboxylase deficiency)d,*
Peroxisomal disorders (eg, Zellweger syndrome)
Urea cycle defects (if severe hyperammonemia)*

Conditions for which a treatment may be available are marked with an asterisk.
aNo effective therapy available but glycine reduction may relieve symptoms in some cases.
bTreatment available only for 1 type of molybdenum cofactor deficiency and should be started before the onset, or early (within days of onset of
symptoms).
cNo effective therapy available but serine supplementation may relieve symptoms if started early.
dTreatment is available for some organic acidemias. Seizures, if they do occur, mostly occur during an acute metabolic crisis (eg, hyperammonemia).
Therefore, the most important approach to treatment and prevention of seizures is management and prevention of an acute metabolic crisis.
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Cataract
Although many metabolic manifestations in the eye present

later in infancy or childhood, in the neonatal period, the

finding of a cataract in a neonate with multisystem disease

can be an indication of galactosemia, a peroxisomal disor-

der, Lowe syndrome, or multiple acyl-coenzyme A (CoA)

dehydrogenase deficiency. (33)

CARDIAC

Cardiomyopathies
A cardiomyopathy diagnosis can reveal an undetected met-

abolic disorder or a diagnosis of a metabolic disorder can

reveal an undetected cardiomyopathy or risk for it in future

years. Metabolic disorders can cause a dilated, hypertrophic

or left ventricular noncompaction type of cardiomyopathy.

(34)(35) Metabolic disorders in which cardiomyopathy can

be the presenting symptom include primary carnitine defi-

ciency (typically associated with a dilated cardiomyopathy,

though cardiac presentation is more common later in child-

hood), very-long-chain acyl-CoA-dehydrogenase deficiency

and other long-chain FAODs (typically dilated cardiomyop-

athy), Pompe disease (hypertrophic cardiomyopathy), mito-

chondrial disorders (fatal infantile hypertrophic obstructive

cardiomyopathy, also dilated cardiomyopathy), or Barth

syndrome (X-linked, more common in males, associated

with left ventricular noncompaction type). Neonates with PA

are at risk for either dilated or hypertrophic cardiomyopathy.

Furthermore, although a neonate with cardiomyopathy

often has lactic acidosis because of poor perfusion second-

ary to cardiac dysfunction, severe intractable lactic acidosis

in a neonate should prompt an evaluation for a mitochon-

drial disorder.

Arrhythmias
Accumulation of storage material in cardiomyocytes lead-

ing to cardiac conduction defects and arrhythmias may

occur in storage disorders. Though this typically does not

occur in neonates, newborns with Pompe disease can

exhibit a shortened PR interval on electrocardiography.

(36) Arrhythmias may also be caused by the accumulation

of toxic metabolites as occurs during a metabolic crisis in

patients with an FAOD. (37)(38)

RESPIRATORY

Tachypnea
Tachypnea is a common nonspecific symptom in both

term and preterm infants that can have multiple causes,

including central nervous system disorders, primary pul-

monary processes, or physiologic disturbances such as

hypoxemia or hypercapnia. A metabolic cause for neonatal

tachypnea should be sought in cases of anion gap metabolic

acidosis, because the tachypnea could be the result of

accumulating organic acid (organic acidemias) or lactic acid

(mitochondrial diseases). These infants typically have a

secondary respiratory alkalosis in an attempt to compensate

for their metabolic acidosis. Tachypnea associated with a

primary respiratory alkalosis (pH >7.45, no anion gap)

should prompt a clinician to consider hyperammonemia

as a result of a urea cycle defect, especially if there is any level

of encephalopathy.

Pulmonary alveolar proteinosis can occur in patients with

lysinuric protein intolerance (LPI), (39) and pulmonary

arterial hypertension can be seen in some neonates with

glycogen storage disorders, such as type I glycogen storage

disease (vonGierke), (40) but these typically do notmanifest

during the neonatal period.

GASTROINTESTINAL/NUTRITIONAL

Liver Failure
Metabolic disorders account for 13% to 54% of cases of

neonatal liver failure. (41)(42) Galactosemia, tyrosinemia,

mitochondrial disorders (especially mitochondrial DNA

depletion syndromes), and congenital disorders of glycosyl-

ation are common metabolic causes of liver failure in

neonates, though tyrosinemia typically presents after the

neonatal period. Galactosemia can present within days of

consuming galactose-containing milk (breast milk or lactose-

containing formula) with signs of hepatocellular damage

such as jaundice, hepatomegaly, elevated transaminases,

and coagulopathy. Escherichia coli sepsis is relatively com-

mon in symptomatic neonates with galactosemia. Positive

urine-reducing substances without the presence of glucose

in the urine can be a sign of galactosemia. All galactose

(lactose)–containing products must be immediately stopped

if galactosemia is being considered, and soy-based formula

used until a diagnosis is either confirmed or ruled out. (43)

Neonatal acute liver failure with elevated transaminases,

coagulopathy, and severe lactic acidosis can be seen in

neonates with mitochondrial DNA depletion syndromes

(typically, multiple genes involved). (44)(45) The diagnosis

of hereditary fructose intolerance (HFI) should be consid-

ered in a neonate who presents with recurrent episodes of

liver dysfunction (elevated transaminases, even coagulop-

athy) with hypoglycemia, lactic acidosis, and hyperuricemia

that rapidly corrects with stopping formula and provision of
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a dextrose infusion. Although an infant with HFI typically

presents with the classic clinical symptoms when the child

starts consuming vegetables and fruit (important sources of

fructose), some infant formulas may contain fructose,

sucrose, or sorbitol (the latter 2 can be metabolized to

fructose) and symptoms can occur earlier. (46)

Cholestatic Liver Disease
Cholestatic liver disease is common in sick neonates, and

parenteral nutrition–induced cholestasis is common in

patients in the NICU. Peroxisomal disorders, mevalonic

aciduria, and congenital disorders of glycosylation are also

possible causes of neonatal cholestatic liver disease, espe-

cially in a neonate with multisystem involvement. Bile acid

synthesis defects typically present with isolated cholestatic

liver disease. (47)(48) In adults, citrin deficiency typically

manifests with recurrent hyperammonemia, but neonates

often present with intrahepatic cholestasis. (49)

Pancreatitis
Neonates with PA, MMA, isovaleric acidemia, and other

organic acidemias are at risk for pancreatitis, especially

during a metabolic crisis. Therefore, amylase and lipase

should be checked in these patients with symptoms of

pancreatitis such as vomiting. (6)(7)(50)

Hepatosplenomegaly
Neonates with various storage disorders (eg, GM1 ganglio-

sidosis, I-cell disease, mucopolysaccharidosis type VII (Sly),

or Niemann-Pick type A and C) can present with hepato-

splenomegaly or splenomegaly. A storage disorder is more

likely if there are additional findings such as fetal hydrops,

ascites, coarse facial features, and skeletal abnormalities

such as dysostosis multiplex. (2)

Failure to Thrive
Failure to thrive (FTT) is a nonspecific finding that can be

present in multiple metabolic diseases as a result of differ-

ent causes such as malabsorption (associated with exocrine

pancreatic insufficiency, intestinal disaccharidase deficien-

cies), aminoaciduria (associated with renal Fanconi

syndrome), or energy failure (found in mitochondrial

diseases). Metabolic causes of FTT should be sought, espe-

cially if the patient has already been evaluated for more

common causes or if there are other signs of a metabolic

disorder (eg, acidosis, dysmorphic features, multisystem

involvement).

Diarrhea
Diarrhea resulting frommetabolic disorders can be related

to deficient absorption such as rare intestinal disacchari-

dase deficiencies (congenital lactase deficiency or sucrase

isomaltase deficiency). (51)(52) Protein-losing enteropathy

in an infant with multisystem involvement (eg, cardiac,

liver) can be a clue to congenital disorders of glycosylation.

(53)(54)

RENAL

Hemolytic Uremic Syndrome
A metabolic etiology is not typically considered in cases of

hemolytic uremic syndrome, which is well-described in

patients with cobalamin synthesis pathway defects espe-

cially in cobalamin C defect. (55)(56)

Renal Fanconi Syndrome
Generalized aminoaciduria, glucosuria, and renal tubular

acidosis can be seen in neonates with galactosemia,

hereditary cystinosis, hereditary fructose intolerance,

mitochondrial disorders, and Fanconi-Bickel syndrome

(hepatorenal glycogenosis, glycogen storage disease type

XI). (2)(57)

Renal Cysts
Multiple renal cysts or polycystic kidneys can be seen, even

prenatally, in patients with peroxisomal disorders (eg, Zell-

weger syndrome), congenital disorders of glycosylation,

carnitine palmitoyl transferase II deficiency, and some

congenital disorders of glycosylation. (2)(58)(59)

SKELETAL

Stippled Epiphyses
Peroxisomal disorders are classic metabolic disorders asso-

ciated with stippled epiphyses (chondrodysplasia punctata).

These include peroxisomal biogenesis defects such as Zell-

weger syndrome as well as defects in peroxisomal enzymes

such as rhizomelic chondrodysplasia punctata. (58)(60)(61)

Of note, warfarin embryopathy can mimic some features of

peroxisomal disorders, particularly structural defects such

as stippled epiphyses. (62)

Orthopedic/Skeletal
Rhizomelic (proximal) shortening of limbs is typical of

peroxisomal disorders. Multiple skeletal abnormalities (ie,

dysostosis multiplex) such as thoracic deformity, kyphosis,

hip dislocation, clubfeet, and deformed long bones can be
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seen at birth in neonates with mucolipidosis type II (I-cell

disease), GM1 gangliosidosis, or multiple sulfatase defi-

ciency. (63)(64) A storage disorder should be considered

in an infant with skeletal involvement, coarse features, and/

or multisystem disease. Arthrogryposis multiplex congenita

(ie,multiple congenital contractures) have been described in

neonates with mitochondrial disorders (65) and storage

disorders such as perinatal-lethal Gaucher disease. (66)

DERMATOLOGIC

Jaundice
Cholestatic liver disease can lead to jaundice (see gastroin-

testinal section).

Ichthyosis
Ichthyosiform or collodion skin changes are typical of the

perinatal lethal form of Gaucher disease. A history of fetal

hydrops, ascites, and hepatosplenomegaly in a critically ill

newborn further supports this diagnosis. Congenital ich-

thyosis (often with congenital erythroderma) can also be

seen in neonates with peroxisomal disorders, X-linked

chondrodysplasia punctata, serine synthesis defects, steroid

sulfatase deficiency, and multiple sulfatase deficiency. Of

note, low maternal serum unconjugated estriol in prenatal

screening can be an indication of X-linked ichthyosis in a

male fetus. (67)(68)

DYSMORPHIC FEATURES

Dysmorphic facial features are common in many chromo-

somal and genetic syndromes. Neonates with metabolic

disease can have coarse facial features, especially in severe

forms of storage disorders such as multiple sulfatase defi-

ciency, mucolipidosis type II (I-cell disease), infantile gal-

actosialidosis, infantile sialidosis, GM1 gangliosidosis, and

peroxisomal disorders (especially Zellweger syndrome). (2)

Multisystem involvement is, again, typical of these conditions.

HEMATOLOGIC

Cytopenias
Anemia, thrombocytopenia, and neutropenia, in isolation or

in combination (including pancytopenia), can occur in

neonates withmetabolic disorders. Cytopenia can be caused

by a deficiency of ametabolite essential for cytopoiesis, bone

marrow infiltration by storage material, hypersplenism, or

bone marrow suppression during a metabolic crisis. Mac-

rocytic anemia can be seen in inborn errors of cobalamin

(B12) or folate (folic acid) metabolism. Bone marrow

infiltration and hypersplenism leading to anemia and often

pancytopenia can occur in storage disorders such as

Gaucher disease. Pancytopenia (often relatively mild and

transient lasting a few weeks) can be found, especially in

neonates with organic acidemias during and after an acute

metabolic crisis and is well described in patients with MMA

and PA. (6)(69)

Vacuolated Lymphocytes
Patients with diseases such as Pompe disease, mucolipido-

sis type II, mucopolysaccharidoses, and Niemann-Pick dis-

ease type I often have vacuolated lymphocytes that are seen

on a blood smear. (2)

Coagulopathy
Any metabolic disorder that presents with liver failure

typically also has an associated coagulopathy and can be

caused by galactosemia and mitochondrial DNA depletion

defects.

Hemophagocytic Lymphohistiocytosis
Several metabolic disorders have been described to cause a

hemophagocytic lymphohistiocytosis/macrophage activa-

tion syndrome; these include LPI, multiple sulfatase defi-

ciency, Gaucher disease, and galactosialidosis as well as

some organic acidemias. (70)

ODORS

Some metabolic disorders have a classic distinctive odor in

sweat, urine, or other body secretions because of the accu-

mulating metabolite. The odor is typically stronger during a

metabolic crisis or when a metabolic disorder is poorly

controlled. Table 3 includes examples of typical odors that

have been typically associated with metabolic disorders.

NEWBORN SCREENING

NBS, especially expandedNBSwith tandemmass spectrom-

etry, has made it possible to analyze multiple analytes

simultaneously and detect several inborn errors of metab-

olism. Most organic acidemias, FAODs, and amino acid-

emias can be detected via NBS. To promote uniform and

comprehensive NBS, theDepartment ofHealth andHuman

Services has a list of w40 conditions called the Recom-

mended Uniform Screening Panel (RUSP), which is peri-

odically updated with new disorders. (3)(71)(72) It is

recommended that all states screen for the conditions listed

in the RUSP. However, although this list offers guidance,

it is not enforced by law. Some states adopt new
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recommendations early whereas others are still in the pro-

cess of adopting them. Some states also screen for additional

disorders not listed in the RUSP. This leads to slight

heterogeneity of disorders screened for by each state. (73)

The most recent additions to the RUSP (and adopted by

many states) include Pompe disease, mucopolysaccharido-

sis type I (ie, Hurler syndrome), and X-linked adrenoleu-

kodystrophy. Disorders are typically detected with either an

elevated (upstream from themetabolic defect) or low (down-

stream from the metabolic defect) amount of analyte, or via

enzyme activity. It is important to recognize that a normal

NBS does not rule out a metabolic disorder because an

infant’s metabolite may have been above or below a cutoff

value at the time the NBS was performed. Also, most

metabolic disorders are not detected on NBS. Examples

of disorders not detected via NBS include mitochondrial

disorders, disorders of pyruvate metabolism, congenital

disorders of glycosylation, and most storage diseases, as

well as most conditions that cause neonatal seizures (Table

2), with some exceptions. Therefore, maintaining a high

index of suspicion of an inborn error of metabolism is vital

in any critically ill neonate.

MATERNAL METABOLIC DISORDERS AFFECTING THE

FETUS OR NEONATE

Maternalmetabolic disorders can affect the neonate because

the maternal metabolite can be toxic and thus, teratogenic.

Alternatively, high maternal amounts of the metabolite can

be transferred across the placenta to the fetus and post-

natally lead to a false-positive NBS.

Teratogenic Effect
Maternal uncontrolled phenylketonuria is a well-known

cause of a metabolic disorder with adverse fetal effects.

High maternal phenylalanine levels during pregnancy can

lead to microcephaly, intellectual disability, congenital heart

defects, esophageal atresia, and IUGR. The specific effects

and extent of the impact depend on the magnitude and

timing of high phenylalanine levels with the period of

organogenesis (ie, first trimester) being the most sensitive

for structural anomalies.

False-positive NBS Result
Two well-described maternal conditions that can cause a

false-positive NBS result in a neonate are primary carnitine

deficiency (carnitine transporter deficiency, low C0 on NBS)

and 3-methylcrotonyl-coA-carboxylase deficiency (high C5-

OH). If an infant has a positive NBS result for these

conditions, it could be the result of a maternal condition.

WHOLE EXOME/GENOME SEQUENCING

A comprehensive review of WES and WGS is beyond the

scope of this review; however, these diagnostic modalities

have proven to be powerful tools in the rapid diagnosis of

genetic andmetabolic disorders in critically ill neonates and

can provide a diagnosis in up to 30% to 50% of critically ill

infants in the NICU. (74)(75)(76)(77)(78)(79)(80) Early diag-

nosis can guide clinical management and improve progno-

sis in cases for which a therapy is available or help direct care

toward palliative care in cases with a poor prognosis.

SUMMARY

Metabolic disorders can present in various ways in a neo-

nate, ranging from a subtle symptom or finding in 1 organ

system to a severe multisystem presentation requiring

immediate management. Early recognition of treatable con-

ditions can improve mortality and morbidity in neonates

affected by these conditions. Furthermore, a definitive diag-

nosis allows for genetic counseling about recurrence risk,

which is important for early recognition of these conditions

in future pregnancies or early in the neonatal period. Pre-

natal diagnosis can help plan for a delivery at a tertiary care

center with expertise in metabolic disorders. Expanded NBS

withmore conditions added periodically, as well asWES and

WGS, will continue to lead to earlier diagnoses of metabolic

disorders in a neonate. A high index of suspicion and

continuous medical education about the advancing knowl-

edge of these conditions will help neonatologists detect

TABLE 3. Typical or Distinctive Odors Described
in Metabolic Disorders

ODOR METABOLIC DISEASE

Maple syrup Maple syrup urine disease

Boiled cabbage Tyrosinemia
Hypermethioninemia

Mousy, musty Phenylketonuria

Sweaty feet Isovaleric acidemia
Glutaric acidemia type II

Rotting fish Trimethylaminuria (odor only manifestation)

Cat urine 3-hydroxy-3-methylglutaric aciduria

Tomcat urine Multiple carboxylase deficiency
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metabolic conditions early and initiate treatment in those

conditions for which an effective therapy is available.
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1. A 2-day-old male term infant presents with lethargy, poor feeding, and tachypnea.
Laboratory evaluation reveals hyperammonemia and a respiratory alkalosis. Which of
the following is most likely to be a potential diagnosis for this patient?

A. Methylmalonic acidemia.
B. Propionic acidemia.
C. Ornithine transcarbamylase deficiency.
D. Lactic acid dehydrogenase deficiency.
E. X-linked hypophosphatemia.

2. A 3-day-old term male infant presents with seizures, vomiting, poor feedings, and
hyperammonemia. He is diagnosed with methylmalonic acidemia. He is admitted to the
NICU. Which of the following would be an appropriate part of initial therapy?

A. Increase protein administration via both enteral and intravenous routes.
B. Vitamin C loading and subsequently in 4-hour intervals given intravenously.
C. Limit fluids to half maintenance to prevent renal overloading.
D. Insulin administration if hyperglycemia develops.
E. Therapeutic hypothermia for 24 hours during medical coma.

3. A 1-day-old female term neonate is noted to have seizures both clinically and then
confirmed on electroencephalography. Which of the following characteristics would be
most consistent with the cause of seizures being a metabolic disorder?

A. History of a perinatal event such as acute maternal hemorrhage or cord entanglement.
B. Persistent seizures without an intracranial abnormality.
C. Seizures that started soon after delivery, with abnormal neurologic examination findings
including hypotonia and lethargy at birth that gradually improved.

D. No other organ involvement other than neurologic symptoms.
E. Normal laboratory evaluation including blood gas, electrolytes, and ammonia level.

4. A 2-day-old female neonate presents with jaundice, emesis, and lethargy. Newborn
screening result is positive for galactosemia. Which of the following ophthalmologic
findings is seen in this condition?

A. Cataracts.
B. Glaucoma.
C. Optic atrophy.
D. Microphthalmia.
E. Iris atrophy.

5. A neonate presents with jaundice, hepatomegaly, and Escherichia coli sepsis at 1 week of
age. Which of the following metabolic disorders is most likely to present with E coli sepsis?

A. Mitochondrial depletion syndrome.
B. Pyruvate kinase deficiency.
C. DNA‐induced encephalopathy.
D. Methylmalonic acidemia.
E. Galactosemia.
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