PET Core Progress

Jan 1, 2024

Executive Summary:

History

The original plan for the SBU PET program was to perform funded research scans at Brookhaven National Laboratory (BNL), as there was a well established PET imaging program there. Unexpectedly, the DOE shut down the BNL PET imaging program in 2014. In response Stony Brook funding was pledged to build a PET program at SBU with the support of President Stanley and Dean Kaushansky. This program proceeded in two phases. In the first phase, the FERM, a small radiochemistry lab, was constructed in the Basic Science Tower to produce Fluorine-18 (F- labeled radiopharmaceuticals, using F-18 purchased from offsite vendors. Imaging was performed on a shared clinical/research scanner, the PET-MR, located in the Ambulatory Cancer Pavilion and acquired with generous philanthropic support from the Laurie family. The second phase was the construction of the Research PET Center in the MART, which began upon the completion and commisioning of the MART facility. This included construction of the BAHL Molecular Imaging Laboratory, with generous support from the BAHL family, containing a high powered cyclotron to produce our own radioisotopes on site (Carbon-11, F-18 and Gallium-68) and a modern radiochemistry lab to produce radiopharmaceuticals suitable for human research scans. The Center initially included one PET scanner (an MiE Scintron) which was soon followed by addition of a modern PET-CT, generously supported by the Laurie and Bahl families. The Center began operation in 2021. The figure shows the number of research scans performed

annually, particularly the increase once the MART Center came fully online in 2021. In 2023 we performed 207 scans in human research participants, and we anticipate doing this many or more in 2024. Additionally, we have entered into

arrangements with two different Industry collaborators to produce radiopharmaceuticals for clinical trials being performed at other sites in the tristate area and beyond. In summaryl, the PET core construction is complete, all regulatory approvals have been obtained, we are producing radiotracers for internal and external research use, and we are expanding our user base. We'd like to thank the institution and our numerous generous supporters for this success.

Radiotracers

The power of PET as both a research and clinical imaging modality is its flexibility. The radioisotopes produced by our cyclotron can be incorporated in a virtually limitless number of molecules capable of imaging different biological molecular targets and processes, and we have an ever expanding palate of radiopharaceuticals ("tracers") available for investigators to address their research questions. Table 1 shows research tracers currently in use at SBU and those currently under development.

Currently In Use; Active Protocols				
Tracer	Target Molecules or	Application Area(s)		
	Biological Processes			
[¹⁸ F]F-AraG	Activated T cells	Immunotherapy in Oncology		
[¹⁸ F]Florbetaben	Amyloid β plaques in brain	Dementia, Normal Aging		
[¹⁸ F]T807	Tau fibrillary tangles in brain	Dementia, Normal Aging		
[¹⁸ F]LY245	κ opioid receptors in brain	Psychiatry (Schizophrenia, Depression, Substance Use)		
[¹⁸ F]VAT	Vesicular acetylcholine transporter in brain	Psychiatry, Neurology, Dementia and Normal Aging		
[¹⁸ F]FEPPA	Translocator Protein in brain	Neuroinflammation; Activated Microglia		
[¹¹ C]ABP688	Metabotropic Glutamate Receptor 5 in brain	Psychiatry		
[¹¹ C]PiB	Amyloid β plaques in brain	Dementia, Normal Aging		
[¹¹ C]UCB-J	Synaptic vesicle protein 2A in brain	Synaptic Density (Psychiatry, Neurology, Epiliepsy)		
[¹¹ C]PS13	Cyclooxegenase-1 in brain	Neuroinflammation		
Currently in the Development Pipeline				
Tracer	Target Molecules or Biological Processes	Application Area(s)		
[¹⁸ F]MK6240	Tau fibrillary tangles in brain	Dementia, Normal Aging		
[¹⁸ F]SMBT-1	Monoamine Oxidase-B	Dementia, Reactive Astrogliosis		
[¹¹ C]LSN317	Muscarinic receptors type 1 and 4 in brain	Psychiatry (Psychotic Disorders, Depression, Substance Use)		
[¹¹ C]-(+)-PHNO Dopamine type D2 and D3 receptors in brain Disorders, Parkinson's D		Psychiatry and Neurology (Psychotic Disorders, Parkinson's Disease)		

Table 1:	Tracers currently	in use and in t	he development	pipeline at SBU
10010 11	madero darrenti			

* Organizational Structure and Current Personnel

Table 2. Current Equipment

Instrument	trument Description			
MART Research PET Center				
Radiochemistry Laboratory				
GE PetTrace 800	High Powered (16.5 MeV) medical cyclotron to support high specific activity			
series Cyclotron	tracer production. Currently configured to produce carbon-11, fluorine-18 and			
	gallium-68			
Comecer Hot Cells	Nine hot cells including 6 Full Size, 2 Mini and 1 Dispensing Hot Cell to support			
	multiple daily syntheses.			
Automated	Two GE Tracerlab FXN pro ¹⁸ F chemistry systems, 1 SanSys			
Chemistry	TracerMaker ¹¹ C system, 1 GE FXC ¹¹ C system and 1 GE FastLab			
Modules	system for ⁶⁶ Ga. These modules support routine daily clinical research			
	tracer production.			
Other Chemistry	I ne cGMP compliant laboratory is equipped with all necessary additional			
Equipment	equipment for producing clinical research tracer doses including a			
Quality Control	Prior to releasing for administration to humans, tracers undergo rigorous			
Laboratory	quality testing for chemical purity and pyrogenicity. Equipment in this lab			
Laboratory	includes High Performance Liquid Chromatography (HPI C, for radio and			
	chemical purity). Gas Chromatography (for solvents). Multichannel			
	Analyzer (for radioisotopic purity) and various instruments to test for			
	pyrogenicity and endotoxins.			
	Scanners			
uMI 550 PET-CT	This recently acquired modern PET-CT has high spatial resolution and			
	ultra-modern detector systems and electronics for high quality, low noise,			
	PET imaging. The PET Core has a research agreement with United			
	Molecular Imaging to develop novel tools to benefit research, such as an			
	optical head motion correction system. The scanner is suitable for brain			
	and whole body imaging.			
MIE Scintron	I his dedicated PET scanner is a Siemens HR+, the gold standard			
	Instrument for decades, rebuilt with modern electronics. Suitable for			
Sigmons Piggraph	This combined PET and MRI scanner is operated by the Department of			
DET_MR	Radiology and is available for research scanning 50% of operating time			
Other Resources at the MART				
Metabolite	A dedicated facility for blood analysis used in scan protocols, including 2			
Laboratory	HPLC systems, gamma counter and a biosafety hood. We are one of a			
Laboratory	small group of US sites with the ability to do blood analysis in conjunction			
	with scans, necessary for rigorously quantiative data analysis.			
Exam Rooms	Two Exam rooms for patient prep, including arterial catheterization			
Miscelaneous	elaneous Automated blood collection system, Participant waiting room.			
FERM Laboratory				
Radiochemistry	Located in the BSC, the FERM lab has 2 additional hot cells and two GE			
	FXN systems for F-18 tracer production, along with complete QC			
	instrumentation.			

Financials

The PET core has dramatically increased funded research over the few years we have been working. We anticipate continued growth as more SBU researchers and outside collaborators become aware of this major new facility and the Core's expertise.

Future Directions:

With the addition of Dr. Jacob Houghton to the PET Exec Committee the PET core will work closely with the cancer center to increase the number of PET research studies in oncology. We also look forward to working with the administration to recruit new clinical oncology researchers to help in this endeavor.