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Practice Gaps

The incidence of retinopathy of prematurity (ROP) and severe ROP continues

to be a concern in extremely preterm infants in the United States. It is

important to develop strategies to prevent severe ROP based on our

understanding of the pathogenesis of ROP and the best available evidence.

Abstract

The incidence of retinopathy of prematurity (ROP) is showing an increasing trend

in the United States. This may be because of increasing survival rates among

extremely preterm infants (<25 weeks’ gestation) and targeting higher oxygen

saturation. Five randomized clinical trials of low versus high oxygen saturation

target ranges found increased mortality in the low oxygen saturation target

group and an increased incidence of ROP in the high oxygen saturation target

group. The American Academy of Pediatrics recommends using an oxygen

saturation target range of 90% to 95% in extremely low-birthweight infants. The

change of practice to target this higher oxygen saturation range, from admission

until discharge, may be contributing to the increasing incidence of ROP in

extremely preterm infants. To decrease the incidence of ROP without increasing

mortality, 2 new cohort trials suggest gradually increasing oxygen saturation

targets as preterm infants mature. There is evidence that humanmilk, vitamin A,

and omega-3 fatty acids can help, in addition to continuous oxygen saturation

monitoring, to decrease the risk of ROP. We review this literature and provide a

meta-analysis to evaluate the evidence.

Objectives After completing this article, readers should be able to:

1. Describe the pathogenesis of the 2 phases of retinopathy of prematurity.

2. Explain the current evidence regarding oxygen saturation targets that can

decrease severe retinopathy without increasing mortality in extremely

preterm infants.

3. Based on current evidence, summarize therapies and oxygen saturation

targets that can help to decrease the risk of retinopathy of prematurity.
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BEAT-ROP Bevacizumab Eliminates the

Angiogenic Threat of

Retinopathy of Prematurity

BOOST Benefits of Oxygen Saturation

Targeting

COT Canadian Oxygen Trial

DHA docosahexaenoic acid

EPO erythropoietin

ET-ROP Early Treatment for Retinopathy

of Prematurity

IGF-1 insulinlike growth factor 1

mRNA messenger RNA

NeOProM Neonatal Oxygen Prospective

Meta-analysis

OIR oxygen-induced retinopathy

PMA postmenstrual age

RCT randomized controlled trial

ROP retinopathy of prematurity

STOP-ROP Supplemental Therapeutic

Oxygen for Prethreshold

Retinopathy of Prematurity

SUPPORT Surfactant, Positive Pressure,

and Pulse Oximetry

Randomized Trial

VEGF vascular endothelial growth

factor

VEGFR2 VEGF receptor 2
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INTRODUCTION

Retinopathy of prematurity (ROP) is an abnormal develop-

ment of retinal vessels that occurs in extremely preterm

infants. Severe ROP is a leading cause of decreased vision/

blindness in children worldwide. (1)(2) The increased sur-

vival of extremely preterm infants, especially with birth

gestational ages between 22 and 24 weeks, has increased

the population of premature infants at risk for ROP/severe

ROP. (3)

INCIDENCE OF ROP/SEVERE ROP

Data from the Neonatal Research Network Centers showed

that in the 2008–2012 cohort of extremely preterm infants

(22–28 weeks’ gestation) the incidence of ROP was 56% for

all infants evaluated, whereas the incidence of severe ROP

(stage ‡3) was 12%. (3) However, for infants with a birth

gestational age between 22 and 24 weeks, the incidence of

ROP and severe ROP was 90% and 43%, respectively. Thus,

there was an inverse relationship between the incidence of

ROP and gestational age. (3) A cross-sectional study ana-

lyzed the incidence of ROP in the United States by querying

the Healthcare Cost and Utilization Project Kids’ Inpatient

Database. The incidence of ROP showed an increasing trend

from 14.7% in 2000 to 19.88% in 2012. (4)

Two single-center cohort studies, one in Canada and the

other in the United States, also reported an increasing

incidence of ROP and severe ROP. (5)(6) The Canadian

study showed that the incidence of ROP was 40.4% in the

years between 2006 and 2010 and 67.1% between 2010

and 2016; severe ROP increased from 9.2% to 14.3%

during these periods. (5) The authors attributed the

increased incidence of ROP to the higher number of

infants born at less than or equal to 24 weeks’ gestation

in the later cohort (15.7%) compared with the early cohort

(8.7%). In the US study (2010–2015), the incidence of ROP

and treated ROP in preterm infants of less than 28 weeks’

gestation at birth was high, at 67% and 29.7%, respectively.

The incidence of treated ROP (9.9%) was also high in

infants born between 28 and 34 weeks’ gestation. (6) Thus,

the trend shows increasing incidence of ROP and severe

ROP at many centers. This trend is concerning because

severe ROP can have a negative impact on long-term visual

and neurodevelopmental outcomes in extremely prema-

ture infants. In addition, there are significant side effects

from treatment (laser surgery, vascular endothelial growth

factor [VEGF] inhibitors or a combination of the two) of

severe ROP.

SEVERE ROP AND LONG-TERM

NEURODEVELOPMENTAL OUTCOME

Severe ROP is a predictor of functional disability in multiple

domains in childhood (7). Infants with severe ROP, compared

with infants without severe ROP, showed significant matura-

tional delay of the optic radiation, posterior limb of internal

capsule, external capsule, and posterior white matter that was

associated with poorer cognitive and motor outcomes at 18

months’ corrected age. (8) After adjusting for perinatal risk

factors, Molloy et al reported that children with severe ROP,

compared with those without severe ROP, had a significantly

lower longitudinal IQ from 2 to 18 years of age. (9)

Studies have compared neurodevelopmental outcomes

based on type of treatment for severe ROP: VEGF inhibitor

versus laser surgery. In the Morin et al study, infants treated

with the VEGF inhibitor bevacizumab had higher odds of

severe neurodevelopmental disability (adjusted odds ratio

[aOR]¼3.1, 95% confidence interval [CI]¼1.2–8.4) compared

with the infants in the laser therapy group. (10) In the

Natarajan et al study, the odds of death (aOR¼2.54, 95%

CI¼1.42–4.55; P¼.002) and cognitive score less than 85

(aOR¼1.78, 95% CI¼1.09–2.91; P¼.02) were significantly

higher in the infants treated with bevacizumab compared

with laser surgery, but the odds of severe neurodevelopmental

impairment did not differ between the groups (aOR¼1.14,

95% CI¼0.76–1.70). (11) Both of these reports were obser-

vational studies and there was no information regarding why

one mode of treatment was chosen over the other to treat

severe ROP. However, in the Bevacizumab Eliminates the

Angiogenic Threat of Retinopathy of Prematurity (BEAT-ROP)

randomized controlled trial (RCT), which compared VEGF

inhibitor treatment to laser therapy to treat severe ROP, no

difference was found in neurodevelopmental outcomes in

infants treated with bevacizumab versus laser surgery. (12)

ROP AND VISUAL OUTCOMES

Visual Acuity
Premature infants with advanced stages of ROP are at the

highest risk for severe visual impairment or blindness. (13)

In the Natarajan et al study of preterm infants treated for

severe ROP (laser surgery, bevacizumab, or both), 6.3% (23/

362) developed bilateral blindness, 4.7% (17/362) developed

blindness in one eye with some function in at least one eye,

and 3.9% (14/362) developed blindness in at least one eye.

(11)
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Refractive Errors
In the Early Treatment for Retinopathy of Prematurity (ET-

ROP) trial, infants with severe ROP who were treated with

laser therapy had a higher prevalence of myopia and high

myopia (<�8 to�5 diopters [D]) than infants with ROPwho

experienced spontaneous regression. (14) In the BEAT-ROP

RCT, infants treated with bevacizumab had significantly

lower rates of myopia, particularly high myopia (zone 1:

3.8% vs 51.4%, zone 2: posterior: 1.7% vs 36.4% in the VEGF

inhibitor vs laser ablation groups, respectively) at 2.5 years of

age. However, treatment of recurrent ROP resulted in high-

er rates of highmyopia (76.5% in those patients treated with

laser vs 25% in patients treated with bevacizumab). (15) The

prevalence of high myopia (defined as spherical equivalent

‡�5 D) was 8% to 35%with bevacizumab, (16) and in a small

study (n¼37 infants, 72 eyes) high myopia was 0% with the

VEGF inhibitor ranibizumab compared with 14.6% with

bevacizumab. (17)

In the ET-ROP study, the incidence of strabismus was

44% at 6 years of age. (18)

SIDE EFFECTS OF ROP TREATMENT

Currently 2 treatment options are available for severe ROP:

laser therapy and/or VEGF inhibitors. Many side effects

occur with both modalities of treatment. Laser therapy

increases the risk of loss of peripheral vision, myopia,

cataract, and pthisis bulbi (shrunken, nonfunctional eye).

(14)(19) A meta-analysis found that laser therapy was asso-

ciated with a decreased spherical equivalent, a shallower

anterior chamber, and an increased incidence of astigma-

tism and myopia. (20) In addition, there are potential side

effects from intubation and anesthesia, which are often

needed for laser therapy.

Bevacizumab is a humanized monoclonal antibody to

VEGF that is used primarily as a chemotherapy agent with

no pharmacologic formulation for premature infants. (21)

Bevacizumab can be detected in the serum 1 to 2 days after

ROP treatment and persists in the serum for 2months. (22).

Serum VEGF decreases slowly after laser surgery but falls

rapidly after bevacizumab treatment. The serum VEGF

levels have been found to be 50% lower in infants treated

with bevacizumab compared with laser surgery. (22) After

treatment with a VEGF inhibitor, serum VEGF was sup-

pressed for 1 (ranibizumab) to 8 weeks (bevacizumab).

(22)(23)(24) The clinical significance of prolonged low levels

of serum VEGF levels, after treatment with a VEGF inhib-

itor, on the angiogenesis in the lungs, kidneys, and brain of

premature infants is unknown.

Recurrence can occur after treatment with either laser

surgery or VEGF inhibitors. Infants with zone 1 disease

treatedwithVEGF inhibitorsmaynot develop adequate retinal

vessels and are at risk for recurrence and retreatment as late as

55 weeks’ postmenstrual age (PMA). (25) Therefore, infants

treated with VEGF inhibitors need prolonged follow-up.

IMPORTANCE OF PREVENTING SEVERE ROP

Pathogenesis of ROP
To develop strategies to prevent ROP, it is important to

understand a) the normal retinal vascular development in

utero, and b) the altered retinal vascular development after

premature birth.

Normal Retinal Vascular Development. In the human

fetus, the retinal vasculature develops by vasculogenesis (de

novo synthesis of blood vessels) and angiogenesis (forma-

tion of blood vessels from preexisting vessels). Vasculo-

genesis starts at approximately 12 weeks’ gestation as

vascular precursor cells start to grow from the hyaloid artery

and migrate toward the periphery to form future retinal

arcades and mesenchymal cells aggregate to form vascular

cords. Retinal vasculogenesis is complete by 21 to 22 weeks’

gestation. Retinal angiogenesis starts at 17 to 18 weeks’

gestation and leads to the development of new vessels from

existing vessels: perifoveal vessels, peripheral vessels, deep

plexus vessels, and the capillary system in the fetal retina.

Retinal angiogenesis is complete when superficial and deep

retinal vessels reach the ora serrata between 36 and 40

weeks’ gestation. (26)

VEGF is necessary for retinal vasculogenesis. The devel-

oping retinal tissues have an increased demand for oxygen,

which leads to localized hypoxia; in response, the expression

of local VEGF is increased. Retinal blood vessels grow by

following awave of physiologic hypoxia in the retina. Vessels

grow toward the VEGF stimulus with formation of new

vessels and continue to progress toward the adjacent stim-

ulus of VEGF triggered by a distant area of hypoxia (27)(28).

Abnormal Retinal Vascular Development Leading to ROP.

In 1954, Ashton et al showed that high oxygen concentration

in kittens led to obliteration of growing retinal complexes

(vaso-obliteritative phase). Later, when these kittens were

exposed to room air, there was profuse growth of vessels into

the retina and into the vitreous (vasoproliferative phase).

(29) Extremely preterm infants are at risk for a delay/

decrease in physiologic retinal vascular development (phase

1) with subsequent vasoproliferation (phase 2). (30) Two

rodent models, the Smith mouse model and the Penn rat

model, of oxygen-induced retinopathy (OIR) have been used

to study the pathogenesis of ROP. (31) The changes in retinal
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vasculature in the OIR model resemble changes seen in pre-

term infants with ROP. In the following section, we describe

the evidence for the pathogenesis of ROP based on rodent

models of OIR and clinical studies in premature infants.

PHASE 1 ROP

Hyperoxia Causes Reduced/Altered Physiologic Retinal

Vascular Development
VEGF facilitates the development of retinal vessels during

normal angiogenesis. In the mouse model of OIR, hyper-

oxia results in reduced VEGFmessenger RNA (mRNA) and

protein with decreased retinal vessel growth; exogenous

VEGF has been found to stop this vaso-obliteration. (32)

Erythropoietin (EPO) is expressed locally during retinal

hypoxia and has been shown to be an important angiogenic

factor. (33) In the OIRmousemodel, EPO protein and receptor

are present in retinal vessels and the EPOmRNAexpression is

reduced with hyperoxia. (34) By increasing the local expression

of EPO, retinal vaso-obliteration was prevented. (34)

Human preterm birth leads to an immediate increase in

oxygen tension (an increase from the intrauterine partial

pressure of oxygen of 50 mm Hg to the ambient air post-

delivery partial pressure of oxygen of 160 mmHg, which is

even higher with supplemental oxygen). Increased oxygen

tension in the retina can lead to suppression of retinal VEGF

and EPO, as seen in the animal models of OIR, leading to

arrest/decrease of retinal vessel growth.

Normal retinal vessel development is decreased in insulin-

like growth factor 1 (IGF-1) knockout mice, and low IGF-1

suppresses VEGF survival signaling in the retinal endothelial

cells. (35) Low IGF-1 levels or lack of IGF-1, in the mouse

model, prevents normal retinal vessel development despite

the presence of normal levels of VEGF. (35) In many pre-

mature infants, serum IGF-1 levels fall shortly after birth. (36)

In the OIR mouse model, an increase in dietary omega-3

fatty acids leads to an increase in retinal omega-3, increased

retinal vessel regrowth, and decreased avascular retina in

phase 1 ROP. (37) Extremely preterm infants have lower

serum omega-3 fatty acid levels, which may contribute to

phase 1 ROP. (38)

Thus, retinal hyperoxia leads to a decrease in retinal

VEGF and EPO, and a decreased amount of growth factors

(IGF-1 and omega-3 fatty acid) in the serum increases the

risk of phase 1 ROP.

PHASE 2 ROP

Hypoxia from an Avascular Peripheral Retina Causes

Vasoproliferation (ie, Neovascularization)
The metabolic activity in the retina increases as preterm

infants mature. However, infants with phase 1 ROP are at

risk for retinal hypoxia because of the avascular peripheral

retina. These infants can progress to phase 2 ROP starting at

30 to 32 weeks’ PMA, with peak phase 2 ROP occurring at

approximately 36 to 38 weeks’ PMA. (39) In very immature

infants born at less than or equal to 24 weeks’ gestation,

stage 3 ROP may develop by 31 weeks’ PMA. (40)

In the OIR rodent model, exposure to high or fluctuating

amounts of supplemental oxygen led to vaso-obliteration of

retinal vessels (phase 1 ROP, hypoxic inner retina) and sub-

sequent exposure to room air led to elevation of VEGFmRNA

and protein levels, resulting in neovascularization (phase 2

ROP). (41)(42) In a murine model, the inhibition of VEGF

by VEGF-receptor chimeric proteins decreased neovascu-

larization by 56%. (43) In the rat OIR model, subretinal

injections of lentiviral vectors with endothelial cell-specific

VEGF receptor 2 (VEGFR2) short hairpin RNA inhibited

vasoproliferation and improved physiologic retinal vascu-

lar development. Excessive stimulation of VEGFR2 from

hypoxia and disruption of endothelial cell function in the

retina may be an important mechanism for abnormal

physiologic vascular development and severe ROP found

in premature infants. (44)

In addition to elevated VEGF, increased levels of retinal

EPO may play a role in the pathogenesis of phase 2 ROP.

EPO (in addition to VEGF) was significantly elevated in the

vitreous of eyes of preterm infants with ROP compared with

infants without ROP. (45) Based on this evidence, it may be

prudent to avoid EPO in patients with phase 2 ROP.

In the mouse OIR model, a diet rich in omega-3 fatty

acids led to decreased neovascularization in phase 2 ROP

because of a decrease in retinal tumor necrosis factor a

levels. (37) In addition, omega-3 fatty acids have a direct

inhibitory effect on neovascularization via the peroxisome

proliferator-activated receptor g pathway. This study found

a reduction in neovascularization by 40% without altering

the normal growth of retinal vessels; this decreased neo-

vascularization was independent of the VEGF pathway.

(46)

STRATEGIES TO DECREASE ROP

Several strategies have been shown to decrease ROP and

severe ROP (Fig 1). In this section, we provide the
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background, summarize the results of our meta-analysis,

and discuss the evidence for each strategy.

Supplemental Oxygen and Oxygen Saturation Target
Ranges and ROP
Background. Limiting supplemental oxygen based on an

oxygen saturation target range is by far the most important

factor (via the VEGF pathway), but not the only factor, to

decrease ROP. An abbreviated history of monitoring oxy-

gen therapy is described here; other reviews provide more

details. (47)

In 1951, Campbell discovered that “intensive” oxygen

therapy was a cause for retrolental fibroplasia (previous

term for ROP). (48) A subsequent multicenter cooperative

Figure 1. Phase 1 retinopathy of prematurity (ROP). There is risk of exposure to retinal hyperoxia and significant decrease in the retinal levels of vascular
endothelial growth factor (VEGF) and erythropoietin (EPO; compared to in utero levels) after preterm birth. Retinal levels of nutrients such as omega-3
fatty acids also fall after preterm birth. These factors may delay the retinal vascular development in a significant number of extremely premature infants
born between 22 0/7 and 27 6/7 weeks’ gestation. Interventions suggested in A can improve the chances of normal retinal vascular development (no
ROP). However, many extremely preterm infants may develop ROP (delayed development of retinal vascular development) by 30 to 32 weeks’
postmenstrual age (PMA) despite these interventions. B. Phase 2 ROP. In premature infants with delayed development of retinal vascular development
(phase 1 ROP), there is a risk of retinal hypoxia leading to significant increase in retinal levels of VEGF and EPO at or after 30 to 32 weeks’ PMA.
Interventions suggested in B can improve the chances of regression of ROP and allow for normal retinal vascular development. Some extremely
preterm infants may progress to neovascularization (severe ROP), despite the suggested interventions, andmay need treatment (laser or VEGF inhibitor
or both).
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study in preterm infants (birthweight £1,500 g, N¼786)

found that a higher concentration of supplemental oxygen

caused significantly more ROP compared with restricting

supplemental oxygen to 40% or less. Themortality was 10%

higher in the oxygen-restricted group. (49) As a result, the

clinical practice changed to restricting oxygen supplemen-

tation to 40% and may have contributed to an increase in

mortality in low birthweight infants (1,000–1,499 g) from

42% in the 1944–1948 cohort to 58% in the 1954–1958

cohort. (50) A study by Flynn et al in 1992 showed that the

duration of having a transcutaneous oxygen tension of

80 mm Hg or higher in the first 4 weeks after birth was

associated with an increased incidence of ROP/severe ROP

in preterm infants weighing less than or equal to 1,300 g. (51)

The Supplemental Therapeutic Oxygen for Prethreshold

Retinopathy of Prematurity (STOP-ROP) trial (52) included

preterm infants with confirmed prethreshold ROP in at

least 1 eye and oxygen saturation less than 94% who

were randomized to an oxygen saturation range of either

89% to 94% (conventional oxygen arm) or 96% to 99%

(supplemental oxygen arm). The primary outcome was

progression to threshold ROP needing treatment (laser or

cryotherapy). The study saturation targets were implemented

for a minimum of 2 weeks. The preterm infants in this study

were born at 25.4–1.5 weeks’ gestation but were not included

in the study until 35.4–2.5 weeks’ PMA when phase 2 ROP

was already well-established.

There was no significant difference in the number of

infants who progressed to threshold ROP (48.5% vs 40.9%).

Subgroup analysis showed that infants without plus disease

at randomization progressed to the threshold significantly

less frequently in the supplemental oxygen arm (32%)

compared with the conventional oxygen arm (46%). In

addition, subjects with zone II ROP progressed less fre-

quently with supplemental oxygen (37%) compared with the

conventional oxygen group (46%). Oxygen requirement

increased by 5% to 9% after randomization to the supple-

mental oxygen group, and at 50 weeks’ PMA, significantly

more infants in the supplemental oxygen group than in the

conventional oxygen group continued to need supplemental

oxygen (46.8% vs 37%, P¼.002).

In the Surfactant, Positive Pressure, and Pulse Oximetry

Randomized Trial (SUPPORT) study (53), premature infants

(born at 24 weeks to 27 weeks and 6 days’ gestational age)

were randomized to either a low oxygen saturation range

(85%–89%) or a high oxygen saturation range (91%–95%).

The oxygen saturation targets were started shortly after birth

and continued until discharge (or death). The primary out-

come was a composite of severe ROP (threshold ROP,

need for treatment), death before discharge, or both.

The composite primary outcome was similar between the

groups. Although an increased incidence of severe ROPwas

observed in the higher oxygen saturation group (17.9% vs

8.6%), the infants with a low oxygen saturation range (85%–

89%) compared with a high oxygen saturation range (91%–

95%) had an increased mortality (19.9% vs 16.2%).

In a study of premature infants of less than 29 weeks’

gestation, the partial pressure of oxygen in arterial blood

was significantly lower with an oxygen saturation range of

85% to 89% compared with an oxygen saturation range of

90% to 95% (w28.5–53.6 vs w34.5–66 mm Hg, respec-

tively). (54)

The SUPPORT study was 1 of 5 randomized trials with

similar protocols. The others were the Benefits of Oxygen

Saturation Targeting (BOOST) II trials in the United King-

dom (UK), Australia, and New Zealand (55) and the Cana-

dian Oxygen Trial (COT) (56). In these trials, the subjects

were of less than 28 weeks’ gestation, and the primary

outcome was to evaluate the effects of oxygen saturation

target ranges of 85% to 89% compared with 91% to 95% on

survival and neurodevelopmental outcomes at 18 to 24

months of age. Halfway through the study, the calibration

algorithm in the study pulse oximeters were changed in the

UK and Australia, and it is not known if this change had any

impact on the results. The recruitment to BOOST II in the

UK and Australia was closed prematurely when interim

analysis showed that infants in the low oxygen saturation

group (85%–89%) had a higher mortality at 36 weeks’ PMA

(21.8%) compared with those in the high oxygen saturation

group (91%–95%) with a mortality of 13.3%.

The data from 4,965 infants enrolled in the aforemen-

tioned 5 trials were combined as a part of the Neonatal

Oxygen Prospective Meta-analysis (NeOProM) collabora-

tion. A meta-analysis (57) showed that the infants in the

lower oxygen saturation group (85%–89%), compared with

those in the higher oxygen saturation group (91%–95%),

had a significantly increased incidence of death at 18 to 24

months’ corrected age (19.9%, 484/2,433 vs 17.1%, 418/

2,440, risk ratio [RR]¼1.16) and a decreased incidence of

severe ROP/ROP requiring treatment (10.6%, 214/2,022 vs

14.8%, 305/2,067, RR¼0.72).

Meta-analysis of Oxygen Saturation and ROP (Fig 2, Fig

3). Results from our meta-analysis of trials of oxygen satu-

ration monitoring and ROP (52)(53)(55)(56) showed a sig-

nificant increased risk of death (Fig 2) in the lower oxygen

saturation group (85%–89%) compared with the higher

oxygen saturation group (91%–95%): RR¼1.16, 95%

CI¼1.03–1.31, P¼.02; risk difference (RD)¼0.03, 95%

CI¼0.00–0.05. The risk for severe ROP (Fig 3) was signif-

icantly reduced in infants in the lower oxygen saturation
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group compared with the higher oxygen saturation group:

RR¼0.73, 95% CI¼0.62–0.87, P<.001; RD¼�0.04, 95%

CI¼�0.06 to �0.02.

Discussion of Oxygen Saturation Monitoring and ROP.

The rationale for choosing the oxygen saturation ranges in

the 5 aforementioned clinical trials (NeOProM) is not clear.

The static oxygen saturation targets (both low and high) do

not mirror the pathogenesis of ROP. Specifically, the lower

oxygen target range (85%–89%) could potentially decrease

the risk of retinal hyperoxia in phase 1 ROP but would

increase the risk of retinal hypoxia in phase 2 ROP. How-

ever, the higher oxygen saturation range (91%–95%) could

significantly increase the risk of retinal hyperoxia, especially

in premature infants born before 25 weeks’ gestation,

leading to a larger avascular peripheral retinal region (phase

1 ROP) and increased risk of neovascularization of the retina

(phase 2 ROP). This pathophysiology may have contributed

to the increased incidence of severe ROP in the higher

oxygen saturation group.

The American Academy of Pediatrics Committee on

Fetus and Newborn recommends a target oxygen saturation

range of 90% to 95% in extremely low-birthweight infants

“as it may be safer than 85%–89%.” (58)Many centers in the

United States and other countries have adopted this recom-

mendation. A study from Australia found an increased

incidence of ROP and severe ROP after changing the oxygen

saturation target range from 88%–92% to 91%–95%. (59) A

US study also found an increased incidence of any ROP,

Figure 3. Meta-analysis of risk of severe ROP in infants exposed to high versus low oxygen saturations. Test for overall effect: Z ¼ 3.66 (P<.01).
Heterogeneity: x2¼8.61, df¼2 (P¼.01); I2¼77%. Statistical method: Mantel-Haenszel, Fixed Effect model. Interpretation: Among the 5 trials, 4,066 infants
were evaluated; results from the meta-analysis showed a significantly reduced risk of severe ROP in the lower oxygen saturation group compared with
the higher oxygen saturation (RR¼0.73, 95% CI¼0.62–0.87, P<.001; RD¼-0.04, 95% CI¼-0.06 to -0.02). However, results for heterogeneity were
significant (P¼.01, I2¼77%), indicating considerable inconsistency in effect sizes among trials (note the nonoverlapping confidence intervals observed
in the forest plot). Similar to the evaluation of mortality, the STOP-ROP trial was not included due to differences in oxygen saturation target goals for the
interventions. CI¼confidence interval; M-H¼Mantel-Haenszel (fixed effect); ROP¼retinopathy of prematurity; RR¼risk ratio.
aSurvived to postmenstrual age of 36 weeks with 1 retinal exam.
bOxygen saturation 89-95% vs. 96-99%.
cNot estimable if interventions differed, populations differed, events were not directly reported in article, or if conflicting data reported in article.

Figure 2.Meta-analysis of mortality risk in infants exposed to low versus high oxygen saturations. Heterogeneity: x2¼0.47, df¼2 (P¼.79); I2¼0%. Test for
overall effect: Z¼2.39 (P¼.02). Statistical method: Mantel-Haenszel, Fixed Effect model. Interpretation: Of the 5 trials evaluated, which included 4,958
infants, the risk of death was observed to be significantly increased for the lower oxygen saturation group (85%-89%) compared with the higher oxygen
saturation group (91%-95%) (RR¼ 1.16, 95% CI¼1.03–1.31, P¼.02; RD¼0.03, 95% CI¼0.00, 0.05). Note that the intervention for STOP-ROP differed from
the other trials (see footnote c) and was deemed not estimable. Differences among trials are reflected in the test for heterogeneity, which were not
significant (P¼.79). In addition, I2¼0% indicates that effect sizes are consistent across studies in the meta-analysis, which is demonstrated in the forest
plot as overlapping confidence intervals. Meta-analyses were conducted in ReviewManager, version 5.3 with either risk ratios or odds ratios (see Figures
2-7). Forest plots were conducted in R utilizing risk ratios only (see Harrer, M., Cuijpers, P., Furukawa, T.A, & Ebert, D. D. (2019). Doing Meta-Analysis in R: A
Hand-on Guide. https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/). In addition, treatment arm continuity correction was used in R to
adjust for uneven sample sizes between groups. Thus, results may differ slightly on pooled effect sizes. BOOST¼Benefits of Oxygen Saturation Targeting;
CI¼confidence interval; COT¼Canadian Oxygen Trial; M-H¼Mantel-Haenszel (fixed effect); ROP¼retinopathy of prematurity; RR¼risk ratio; STOP-
ROP¼Supplemental Therapeutic Oxygen for Prethreshold Retinopathy of Prematurity; SUPPORT¼Surfactant, Positive Pressure, and Pulse Oximetry
Randomized Trial.
aDeath before hospital discharge.
bDeath before discharge.
cOxygen levels: 96-99% vs 89-95%; all deaths at 3 months' corrected age.
dNot estimable if interventions differed, populations differed, events were not directly reported in article, or if conflicting data reported in article.
eDeath before discharge.

Vol. 21 No. 4 APR IL 2020 e255
 at Stony Brook University on July 14, 2021http://neoreviews.aappublications.org/Downloaded from 

https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/
http://neoreviews.aappublications.org/


type 1 ROP, and treated ROP after changing from a biphasic

target (85%–92% until 34 weeks’ PMA and >94% at >34

weeks’PMA) to a static 90% to 95%oxygen saturation target

range (independent of gestation at birth and PMA). (60)

There is evidence (from single-center retrospective trials

and the NeOProM trials) that targeting a constant oxygen

saturation range of 90% to 95% increases the risk of ROP

and severe ROP. Thus, the question remains: “Which

oxygen saturation target ranges would decrease ROP AND

not increase mortality in extremely premature infants?” The

answer may be found in 2 recent retrospective cohort studies

that showed a significant decrease in the incidence of severe

ROP, without an increase in mortality. (61)(62) Both studies

showed that gradually increasing oxygen saturation targets

prevents early hyperoxia, and later retinal hypoxia, when

compared with static oxygen saturation targets.

In the Cayabyab et al study (61), oxygen saturation targets

were gradually increased to mimic the increasing oxygen

delivery and oxygen consumption ratios similar to fetal life.

The incidence of ROP/severe ROP in extremely premature

infants (24–27 weeks’ gestation) from 2 periods was com-

pared. In the 1995–2001 infant group (group 1), the oxygen

saturation target ranges were 90% to 94% from birth to 35

weeks’ PMA and greater than 94% starting at 36 weeks’

PMA. In the 2003–2010 infant group (group 2), the oxygen

saturation target ranges were 83% to 89% from birth to 32

weeks’ PMA, 90% to 94% from 33 weeks to 35 weeks’ PMA,

and greater than 94% at 36 weeks’ PMA (“graded oxygen

saturation targets”). There was no significant difference in

mortality between the 2 groups. However, there was a sig-

nificant decrease in the incidence of severe ROP (48.3% in

group 1 vs 21.3% in group 2) and the need for laser treatment

(34.9% in group 1 vs 19.7% in group 2). Thus, the targeting

graded oxygen saturation was deemed superior in this study.

In the Colaizy et al study (62), oxygen saturation alarm

limits were set at 80% to 93%, with an oxygen saturation

target range of 84% to 93% for infants of less than or equal

to 26 weeks’ PMA; alarm limits were 80% to 95% with a

target of 86% to 94% for infants of 27 to 31 weeks’PMA; and

alarm limits were 85% to 98% with an oxygen saturation

target range of 90% to 95% at greater than 32 weeks’ PMA.

In epoch 1 (2002–2007), the oxygen saturation targets were

not changed if infants were diagnosed with prethreshold

ROP. In epoch 2 (2008–2012), in those infants who devel-

oped stage 2 ROP and were receiving low-flow nasal cannula

oxygen (<1 L/min), the oxygen saturation targets were

increased to greater than 94% (with alarm limits of

90%–100%). For infants receiving high-flow nasal cannula,

mechanical ventilation, or nasal continuous positive airway

pressure, the oxygen saturation target was also greater than

94% (alarm limits of 90%–100%) as long as the FiO2 did not

exceed 0.5. In both situations, the supplemental oxygen was

not weaned below an effective oxygen level of 35% to 40%

(floor) until the ROP had improved. There was a significant

decrease in the progression beyond stage 2 during epoch 2

(23%) compared with epoch 1 (44%). The incidence of plus

disease also decreased in epoch 2 (12.6%) compared with

epoch 1 (18.9%). The rationale for the oxygen saturation targets

used in this study was to decrease retinal hyperoxia and allow

the physiologic development of retinal vessels to occur (birth to

31 weeks’ PMA). After 32 weeks’ PMA, higher oxygen satura-

tions were targeted to decrease the risk of hypoxia and prevent

the surge of VEGF in phase 2 ROP.Using the oxygen saturation

targets from epoch 2, the overall survival was 90% among

premature infants born at 23 to 27 weeks’ gestation in 2018,

whereas the incidence of severe ROP, laser therapy, and necro-

tizing enterocolitis was 1.6%, 0.8%, and 1.4%, respectively.

(J. Klein, MD, personal communication, 2019)

It is known that infants with fluctuating oxygen satura-

tions have an increased risk of severe ROP. (63) Attempts

have been made to decrease these fluctuations using an

automated oxygen control system (closed loop system)

compared with a manual control system. A recent study

of the closed loop system showed that preterm infants spent

more time in the target range (manual vs automated: 48.4%

vs 61.9%) with a significant reduction in time spent greater

than 95% (hyperoxia), (41.9% vs 19.3%) but the time spent

less than 90% increased (8.6% vs 15.1%). (64) Cerebral near-

infrared spectroscopy can be used to improve oxygen mon-

itoring. (65) These new technologies need further study.

Human Milk and ROP
Background. Human milk, especially preterm milk, is rich

in a number of bioactive factors. The bioactive factors that

are available in preterm human milk that may help to prevent

ROP include exogenous (carotenoids, retinol, and a- and g-

tocopherol) andendogenous (superoxidedismutase, glutathione

peroxidase, catalase, and glutathione) antioxidants and growth

factors (VEGF and IGF-1). (66) A few observational/cohort

studies have investigated whether feeding human milk can

decrease the risk of ROP/severe ROP and results have been

conflicting. (67)(68)(69)(70)(71)(72)(73)(74) In these trials, the

percentage of human milk that infants received varied signif-

icantly. Three meta-analyses of these clinical studies have been

published, (75)(76)(77) and the conclusions are conflicting:

human milk feeding (5 studies) potentially decreased the risk

for ROP/severe ROP (75); human milk significantly decreased

the risk of ROP and severe ROP (76); and no reduction of ROP,

but a significant decrease in severe ROP (2 studies) was found

with increased human milk exposure. (77)
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Meta-analysis of Human Milk and ROP Studies (Fig 4).

Our meta-analysis (Fig 4, 5 studies) showed that the odds

of any ROP was significantly reduced when extremely

premature infants were fed human milk compared

with formula (odds ratio [OR]¼0.31, 95% CI¼0.19–

0.49, P<.001; RD¼�0.011, 95% CI¼�0.14 to �0.08).

(67)(68)(71)(72)(74)

Discussion of Human Milk and ROP. A US study from

2017 showed that nearly 71% of extremely preterm infants

received human milk from their mothers. (78) At many

centers, donor human milk is used when the mother is

not able to provide milk. Schanler et al found the incidence

of severe ROP (stage 3) to be 5.6% in preterm infants of less

than 30 weeks’ gestation who were fed mother’s milk

compared with 19% who were fed donor human milk and

14% in those fed preterm formula. (79) In this study, the

incidence of necrotizing enterocolitis was the primary out-

come measure. A case control study of very low-birthweight

infants found no difference in the incidence of ROP when

infants were fedmother’s milk compared with donor human

milk. (80)

Omega-3 Fatty Acids and ROP
Background. Docosahexaenoic acid (DHA, omega-3 fatty

acid) and arachidonic acid (omega-6 fatty acid) are essential

fatty acids that are transferred to the fetus in the third

trimester. Extremely preterm infants are DHA-deficient at

birth, which worsens by 1 month of age; the most immature

infants are at risk for the largest deficiency. (81) Omega-3

Figure 4. Meta-analysis of human milk and odds of any ROP. Heterogeneity: x2¼10.60, df¼4 (P¼.03); I2¼62%. Test for overall effect: Z¼4.95 (P<.001).
Statistical method: Mantel-Haenszel, Fixed Effect model. Interpretation: A total of 1,243 infants, from 5 observational studies, were included in the meta-
analysis to compare type of milk received. The odds of any ROP was significantly reduced when infants were fed human milk versus formula (OR¼0.31,
95% CI¼0.19–0.49, P<.001; RD¼-0.011, 95% CI¼-0.14 to -0.08); heterogeneity was significant (P¼.03, I2¼62%), indicating substantial inconsistent effect
sizes among these studies. Using risk ratios produced similar results. These inconsistencies may be accounted for by differences in milk feeding types,
exclusive milk type vs not exclusive, enhanced humanmilk vs not enhanced; by differences in measures for retinopathy, any ROP vs severe ROP; and by
bias associated with the study design. CI¼confidence interval; M-H¼Mantel-Haenszel (fixed effect); OR¼odds ratio; ROP¼retinopathy of prematurity.
aAny ROP; very low birthweight; daily volume of maternal milk ‡50mL/kg vs <25 mL/kg.
bSevere ROP, stage 3 and 4; very low birthweight; 80–100% human milk vs <20% human milk and formula.
cSevere ROP, stage 3; gestational age 24–28 weeks.
dSevere ROP, stage 3 (threshold ROP).
eSevere ROP, stage 3; exclusive breastmilk vs exclusive formula.

Figure 5.Meta-analysis of omega-3 fatty acids and risk of severe ROP. Heterogeneity: x2¼4.63, df¼2 (P¼.10); I2¼56.77%. Test for overall effect: Z¼1.06
(P¼.29). Statistical method: Mantel-Haenszel, Fixed Effect model. Interpretation: Three studies, including 288 infants, were evaluated for the association
between omega-3 fatty acid and severe ROP. Three studies were omitted in the final meta-analysis because either the number of events (ROP) was not
reported or the interventions differed (see “Not estimable” in the table). Results showed a reduced risk of severe ROP in the fish oil group, although this
was not significant (RR¼0.79, 95% CI¼0.52–1.21, P¼.29). Although test results for heterogeneity were not significant (P¼.10, I2¼57%), substantial
inconsistency of effect sizes was found among studies. Note that data were sparse, especially for Beken et al. study (88), and most sample sizes were
small. CI¼confidence interval; M-H¼Mantel-Haenszel (fixed effect); ROP¼retinopathy of prematurity; RR¼risk ratio.
aSevere ROP stage 3 plus; fish-oil vs soybean oil.
bSevere ROP stage 3; DHA vs sunflower oil; conflicting event counts.
cNot estimable if interventions differed, populations differed, events were not directly reported in article, or if conflicting data reported in article.
dSevere ROP grade III; Omega-3 fatty acids with breast milk vs sterile water.
eSevere ROP stage 3; 31 out of 90 infants; event counts per group not reported.
fSevere ROP stage 3 or treated for ROP; a 4-oil lipid emulsion vs refined olive þ soybean oil.
gROP requiring laser therapy; titrated dosage: an omega-3 fatty acid emulsion þ olive/soybean oil vs olive/soybean oil alone.
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fatty acids can be delivered to extremely premature infants

via parenteral lipid emulsion or an enteral route.

Parenteral lipid emulsions have different polyunsatu-

rated fatty acids; omega-6 fatty acids in soybean lipid

emulsion and omega-3 and omega-6 fatty acids in fish oil lipid

emulsion. Observational studies, RCTs, and meta-analyses

are now available comparing the efficacy of fish-oil lipid

emulsion with soybean lipid emulsion to decrease the inci-

dence of severe ROP. (82)(83)(84)(85)(86)(87)(88)(89) The

meta-analysis by Vayalthrikkovil et al (6 studies, 4 RCT, 1

prospective clinical trial, and 1 retrospective observational

trial in premature infants <32 weeks’ gestation/birthweight

<1,500 g with ROP as the primary outcome) (89) concluded

that use of fish-oil lipid emulsion was associated with a

significant reduction in severe ROP/ROP needing treatment.

However, themeta-analysis by Fang et al concluded that there

was no impact on any stage ROP or severe ROP with the use

of fish oil–based lipid emulsion. (77)

Meta-analysis of Omega-3 Fatty Acids Supplements and

ROP (Fig 5). Our meta-analysis (Fig 5, 3 studies) showed a

nonsignificant risk reduction of severe ROP in the fish-oil

lipid emulsion group (RR¼0.79, 95%CI¼0.52–1.21, P¼.29).

(83)(84)(85)(86)(87)(88)

Discussion of Omega-3 Fatty Acids and ROP. Supplemen-

tation of lactating mothers with sufficient DHA (1,000 mg)

led to an increased concentration of DHA in breast milk and

consumption of this DHA-enriched breast milk decreased

inflammation markers in extremely premature infants. (90)

Whether supplementing lactating mothers with 1,000 mg of

Figure 6. Meta-analysis of vitamin A and odds of any ROP. Heterogeneity: x2¼10.15, df¼3 (P¼.02); I2¼70.43%. Test for overall effect: Z¼4.41 (P <.01).
Statistical method: Mantel-Haenszel, Fixed Effect model. Interpretation: A total of 463 infants, from 4 observational studies, were included in the meta-
analysis to compare the association between vitamin A and any/severe ROP. The odds of any ROP was significantly reduced when infants received
vitamin A supplementation (OR¼0.27, 95% CI¼0.15–0.48, P<.001; RD¼-0.015, 95% CI¼-0.22 to -0.09); heterogeneity was significant (P¼.02, I2¼70%),
indicating substantial inconsistent effect sizes among these studies. These inconsistencies may be accounted for by the differences in vitamin A dose or
by differences in measures for retinopathy, any ROP vs severe ROP, or a result of bias inherit in the study design. CI¼confidence interval; M-H¼Mantel-
Haenszel (fixed effect); OR¼odds ratio; ROP¼retinopathy of prematurity.
aAny retinopathy; 10,000 units vs standard 5,000 units.
bROP requiring laser therapy; intramuscular injection.
cAny retinopathy.
dROP includes both type 1 and 2.

Figure 7. Meta-analysis of vitamin E and risk of any ROP. Heterogeneity: x2¼1.20, df¼3 (P¼.59); I2¼0.00%. Test for overall effect: Z¼3.21 (P<.01).
Statistical method: Mantel-Haenszel, Fixed Effect model. Interpretation: The association of vitamin E and any/severe ROP was evaluated for 1,042 infants
from 4 clinical trials. Previous systematic reviews included 2 other studies, shown as “Not estimable”, because these articles did not report the number of
events for ROP, or the outcome did include ROP. Results of the meta-analysis showed the risk of any/severe ROP was significantly reduced when infants
received vitamin E (RR¼0.30, 95% CI¼0.14–0.62, P¼.001; RD¼-0.04, 95% CI¼-0.07 to -0.02). An evaluation of heterogeneity was not significant (P¼.75,
I2¼0%), indicating findings from these studies are consistent with overlapping confidence intervals in the forest plot. CI¼confidence interval;
M-H¼Mantel-Haenszel (fixed effect); ROP¼retinopathy of prematurity; RR¼risk ratio.
aSevere ROP stage III; no events reported.
bNot estimable if interventions differed, populations differed, events were not directly reported in article, or if conflicting data reported in article.
cAny retrolental fibroplasia; treatment titrated to 100 units.
dRetrolental fibroplasia grade III; treatment 100 mg/kg (not titrated).
eSevere ROP grade III; 1500 g birthweight or less.
fSevere ROP stage 3þ; 8 of 9 in control group also received vitamin E in the late stage.
gOral vitamin E for prevention of anemia; unreported events in article.
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DHAcan decrease the incidence of severe ROPneeds further

study.

Vitamin A Supplementation and ROP
Background. Vitamin Amay have a role in the prevention of

ROP. (91)(92)(93)(94)(95)(96) In a rat model of OIR, sup-

plementation with retinoids inhibited VEGF expression and

decreased neovascularization. (97) A meta-analysis of clinical

trials of vitamin A supplementation showed a 33% decrease in

any ROP with no effect on the incidence of severe ROP. (77)

Meta-analysis of Vitamin A and ROP (Fig 6). Our meta-

analysis (Fig 6, 4 studies) showed that the odds of any

ROP was significantly reduced when infants received

vitamin A supplementation (OR¼0.27, 95% CI¼0.15–

0.48, P<.001; RD¼�0.015, 95% CI¼�0.22 to �0.09).

(91)(92)(95)(96)

Discussion of Vitamin A and ROP. Vitamin A supple-

mentation, in addition to improving retinal function in

premature infants (96), may decrease the incidence of ROP.

Vitamin E Supplementation and ROP
Background. Premature infants exposed to supplemental

oxygen are at risk of abnormal retinal vessel development

mediated by oxygen free radicals. Vitamin E, an essential fat-

soluble vitamin obtained from the diet, is known to neutralize

free radicals and reduce oxidative stress. A study in albino rats

using the OIR model showed that vitamin E water-soluble

analog, when compared to a vehicle, significantly decreased the

area of avascular retina and increased capillary density. (98)

In the 1980s, clinical trials investigated the efficacy and

safety of vitamin E as prophylaxis and treatment of ROP.

(99)(100)(101)(102)(103)(104) Two meta-analyses found

that the use of vitamin E did not reduce the incidence of

ROP but significantly reduced the incidence of severe

ROP (‡stage 3). (105)(106) In a third meta-analysis that

only included the RCTs, vitamin E supplementation did

not significantly reduce the risk of severe ROP. (77) One

study found an increased risk of necrotizing enterocolitis

and sepsis with vitamin E supplementation if the serum con-

centration of vitamin E exceeded the physiologic range. (100)

Meta-analysis of Vitamin E and ROP (Fig 7). Our meta-

analysis (Fig 7, 4 studies) showed that the risk of any/severe

ROP was significantly reduced with vitamin E (RR¼0.30,

95%CI¼0.14–0.62,P¼.001; RD¼�0.04, 95%CI¼�0.07 to

0.02). (96)(97)(98)(99)(100)(101)

Discussion of Vitamin E and ROP.Vitamin E is low in the

breast milk of mothers who smoke and in donor breast milk.

(107)(108) In view of increased risk of necrotizing enteroco-

litis, selective vitamin E supplementation may be considered

for infants of greater than 34 weeks’ PMAwith phase 2 ROP.

Strategies to Reduce ROP that DO NOT Work
IGF-1 and ROP. Animal and clinical studies have provided

evidence that IGF-1 supplementation could reduce severe

ROP. However, a phase 2 randomized study of recombinant

human IGF-1 complexed with binding protein 3 did not

show any significant decrease in severe ROP in extremely

premature infants. (109)

Myo-inositol and ROP. A randomized clinical trial of

myo-inositol did not show any reduction in severe ROP in

extremely premature infants born at less than 28 weeks’

gestation. (110)

Strategies to Reduce ROP with Some Evidence of Benefit
Light and ROP. In an OIR rat model, rearing in the dark

prevented vaso-obliteration of retinal vessels from hyperoxia,

thus preventing thedevelopment of phase 1ROP. (111) Inphase

2 ROP, light adaptation reduced rod photoreceptor oxygen

consumption by 50% in the rat model and led to less retinal

hypoxia and downregulation of retinal VEGF. (112) Gaynon

et al routinely exposed the preterm infants at their center to

ambient light to decrease retinal hypoxia in phase 2 ROP.

(113) However, there are no clinical trials of this practice.

Other interventions that could increase, decrease, or have

no effect on the risk of ROP include EPO supplementation

(47), red blood cell transfusions (114), propranolol therapy

(115) and hyperglycemia (47).

SUMMARY

1. The incidence of ROP in the United States shows an

increasing trend.

2. Severe ROP can increase the risk of visual and neuro-

developmental deficits in premature infants.

3. Laser therapy and intravitreal injection of VEGF inhibitors

are effective inmost infantswith severeROP.However, both

laser surgery and VEGF inhibitors have many side effects.

4. In the NeoPrOM trials, mortality was increased in

infants with a low oxygen saturation range (85%–89%)

and the incidence of ROP was increased in infants with a

high oxygen saturation range (91%–95%).

5. Recent studies have used increasing oxygen saturation

targets, as premature infants mature, to mirror the patho-

genesis of ROP and have not found an increase inmortality.

6. There is evidence that human milk, vitamin A, omega-3

fatty acids, and vitamin E can decrease the risk of ROP

and are recommended in addition to adequate oxygen

saturation monitoring.
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