Stuart McLaughlin


Stuart McLaughlinStuart McLaughlin
Distinguished Professor

Ph.D. University of British Columbia, Canada, 1968

Stony Brook University
Stony Brook, NY, 11794-8661



The McLaughlin lab is interested in how biophysical phenomena e.g., electrostatics, reduction of dimensionality, coincidence counting choreograph the diffusional dance of signal transduction molecules, and thus the flow of information in a cell. The lipid PIP2 is required for the attachment of the cytoskeleton to the plasma membrane, exocytosis, phagocytosis and the activation actin-binding proteins. How a single lipid does all this remains an enigma: our working hypothesis is that PIP2 binds electrostatically to basic residues on proteins. To study the formation of pools of PIP2 in the plasma membrane, fluorescent PIP2 is microinjected into cells: it incorporates into the plasma membrane and its motion is followed at the single molecule level using FCS. Evidence is emerging that there are protein fences that impede the diffusion of PIP2 out of local regions (e.g. nascent phagosomes) and thus allow the kinases that synthesize PIP2 (PIPkins) in these local regions to produce an enhanced concentration of PIP2.

Recent Publications

81.  Golebiewska, U., Gambhir, A., Hangyás-Mihályné, G., Zaitseva, I., Rädler, J., McLaughlin, S.  2006. Membrane-bound basic peptides sequester multivalent (PIP2) but not monovalent (PS) acidic lipids.  Biophys. J. 91 588-599.
82.  Gao, J., Shumay, E., McLaughlin, S., Wang, H., Malbon, C.  2006.  Regulation of AKAP-membrane interactions by calcium.  J. Biol. Chem., 281, 23932-23944.
83.  Sato, T., Pallavi, P., Golebiewska, U., McLaughlin, S., Smith, S.O.  2006.  Structure of the membrane reconstituted transmembrane-juxtamembrane peptide EGFR(622-660) and its interaction with Ca2+/calmodulin.  Biochemistry 45, 12704-12714.
84.  Sengupta, P., Ruano, M. J., Tebar, F., Golebiewska, U., Zaitseva, I.,  Enrich, C., McLaughlin, S. and Villalobo, A.  2007.  Membrane permeable calmodulin inhibitors (e.g., W-7/W-13) bind to membranes, changing the electrostatic surface potential: dual effect of W-13 on EGFR activation. J. Biol. Chem.  282, 8474-8486.
85.  Nomikos, M., Mulgrew-Nesbitt, A.,  Pallavi, P., Mihalyne, G., Zaitseva, I., Swann, K., Lai, F.A., Murray, D., and McLaughlin, S.  2007.  Binding of phosphoinositide-specific phospholipase C-ζ (PLC-ζ) to phospholipid membranes: potential role of an unstructured cluster of basic residues.  J. Biol. Chem.  282, 16644-16653.
86.  Golebiewska, U., Nyako, M.,  Woturski, W., Zaitseva, I., McLaughlin, S. 2008.  Diffusion coefficient of fluorescent phosphatidylinositol 4,5-bisphosphate (PIP2) in the plasma membrane of cells.  Mol. Biol. Cell. 19: 1663-1669.
87.  Sengupta, P., Bosis, E., Nachliel, E., Gutman, M., Smith, S.O., Mihalyne, G., Zistseva, I., McLaughlin, S.  2009.  EGFR juxtamembrane domain, membranes, and calmodulin: kinetics of their interaction.  Biophys. J. 96: 4887-4895.
88.  Williams, D., Vicogne, J., Zaitseva, I., McLaughlin, S., Pessin, J.E.  2009.  Evidence that electrostatic interactions between vesicle-associated membrane protein 2 and acidic phospholipids may modulate the fusion of transport vesicles with the plasma membrane.  Mol. Biol. Cell.  20: 4910-4919.
89.  Golebiewska, U., Kay, J.G., Masters, T., Grinstein, S., Im, W., Pastor, R.W., Scarlata, S., McLaughlin, S.  2011.  Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate (PIP2) out of the forming phagosomes of macrophages.  Mol. Biol. Cell.  22: 3498- 3507.