Selected Publications |
PubMed Bibliography
Varadaraj, K., Kumari, S.S.. (2018). Molecular mechanism of Aquaporin 0-induced fiber cell to fiber cell adhesion in the eye lens. Biochem. Biophys. Res Commun. 506:284-289
Kumari, S., Varadaraj, M., Menon, A.G., Varadaraj, K. 2018. Aquaporin 5 promotes corneal wound healing. Exp. Eye Res., 172:152-158
Kumari, S., Gao, J., Mathias, R.T., Sun, X., Eswaramoorthy, A., Browne, N., Zhang, N., Varadaraj, K., 2017. Aquaporin 0 modulates lens gap junctions in the presence of lens-specific beaded filament. Proteins. Invest. Ophthalmol. Vis. Sci. 58:6006-6019
Patil, R.V., Xu, S., van Hoek, A., Rusinko, A., Feng, Z., May, J.,Hellberg, M. Sharif, N.A., Wax, M.B., Irigoyen, M., Carr, G. Brittain,T., Brown, P., Colbert, D., Kumari, S., Varadaraj, K., Mitra, A.K. 2016. Rapid identification of Novel Inhibitors of the Human Aquaporin-1 Water Channel. Chem Biol Drug Des., 87:794-805
S.S. Kumari, N. Gupta, A. Shiels, P.G FitzGerald, A.G Menon, R.T.Mathias, K. Varadaraj. Role of Aquaporin 0 in lens biomechanics.Biochemical and Biophysical Research Communications(2015), doi: 10.1016/j.bbrc.2015.04.138.
Kumari S.S, Varadaraj K, Aquaporin 0 plays a pivotal role in refractive index gradient development in mammalian eye lens to prevent spherical aberration.Biochem Biophys Res Commun. 2014 Oct 3;452(4):986-991.
Kumari, S. S., Varadaraj, K. 2014. Intact and N- or C-terminal end truncated AQP0 function as open water channels and cell-to-cell adhesion proteins: End truncation could be a prelude for adjusting the refractive index of the lens to prevent spherical aberration.Biochim. Biophys. Acta, 1840: 2862-2877.
Kumari, S. S., Varadaraj, K. 2013. Aquaporin 5 knockout mouse lens develops hyperglycemic cataract. Biochem. Biophys. Res. Commun., 441: 333-338.
Yang, Y., Yang, H., Wang, Z., Varadaraj, K., Kumari, S. S., Mergler, S., Okada, Y., Saika, S., Kingsley, P. J., Marnett, L.J., Reinach, P. S. 2013. Cannabinoid receptor 1 suppresses transient receptor potential vanilloid 1-induced inflammatory responses to corneal injury. Cell Signal, 25: 501-511.
Kumari, S.S., Gandhi, J., Mustehsan, M.H., Eren, S., Varadaraj, K. 2013. Functional characterization of an AQP0 missense mutation, R33C, that causes dominant congenital lens cataract, reveals impaired cell-to-cell adhesion. Exp. Eye Res., 116: 371-385.http://www.ncbi.nlm.nih.gov/pubmed/24821012
Gao, J., Wang, H., Sun, X., Varadaraj, K., Li, L., White, T.W., Mathias, R.T. 2013. The effects of age on lens transport. Invest. Ophthalmol .Vis. Sci., 54: 7174-7187.
Kumari, S.S., Varadaraj, M., Yerramilli, V.S., Anil G. Menon, A.G., Varadaraj, K. 2012. Spatial expression of aquaporin 5 in mammalian cornea and lens, and regulation of Its localization by phosphokinase A. Mol. Vis., 18:957-967.
Kumari, S.S., Eswaramoorthy, S., Mathias, R.T., Varadaraj, K. 2011. Unique and analogous functions of aquaporin 0 for fiber cell architecture and ocular lens transparency. Biochim. Biophys. Acta.,1812:1089-1097.
Varadaraj, K., Kumari, S. S. and Mathias, R. T. 2010. Transgenic Expression of AQP1 in the AQP0 knockout Mouse: Impact on Lens Transparency. Exp. Eye Res. 91:393-404.
Kumari, S. S. and Varadaraj, K. 2009. Intact AQP0 performs cell-to-cell adhesion. Biochem. Biophys. Res. Commun., 390:1034-1039.
Wang, H., Gao, J., Sun, X., Martinez-Wittinghan, F. J., Li, L., Varadaraj, K., Farrell, M., Reddy, V. N., White, T. W. and Mathias, R. T. 2009. The effects of GPX-1 knockout on membrane transport and intracellular homeostasis in the lens. J. Membr. Biol. 227:25-37.
Varadaraj, K., Kumari, S.S., Patil, R., Wax, M.B. and Mathias, R.T. 2008. Functional characterization of a human aquaporin 0 mutation that leads to a congenital dominant lens cataract. Exp. Eye Res., 87: 9-21.
Varadaraj, K., Kumari, S.S. and Mathias, R.T. 2007. Functional expression of aquaporins in embryonic, postnatal, and adult mouse lenses. Dev. Dyn., 236:1319-1328.
Varadaraj, K., Kumari, S.S. and Mathias, R.T. 2005. Regulation of aquaporin water permeability in the lens. Invest. Opthalmol. Vis. Sci., 46:1393-1402.
Shiels, A., Bassnett, S. Varadaraj, K., Mathias, R.T., Al-Ghoul, K., Kuszak, J., Donoviel, D., Lillenberg, S., Friedrich, G., and Zambrowicz, B. 2001. Optical dysfunction of the crystalline lens in aquaporin-0-deficient mice. Physiol. Genomics 7:179-186.
Kumari, S. S., Varadaraj, K.,Valiunas, V., and Brink, P.R. 2001. Site-directed mutations in the transmembrane domain M3 of human connexin37 alter channel conductance and gating. Biochem. Biophys. Res. Commun., 280:440-447.
Kumari, S. S., Varadaraj, K.,Valiunas, V., Ramanan, S. V., Christensen, E. A., Beyer, E.C., and Brink, P.R. 2000. Functional expression and biophysical properties of polymorphic variants of the human gap junction protein Connexin 37. Biochem. Biophys. Res. Commun., 274:216-224.
Varadaraj, K., Kushmerick, C., Baldo, G.J., Shiels, A., Bassnett, S. and Mathias, R.T. 1999. Role of MIP in lens fiber cell membrane transport. J. Membrane Biol., 170:191-203.
Ramanan, S.V., Brink, P.R., Varadaraj, K., Schirrmacher, K. and Banach, K. 1998. A three-state model for connexin37 gating kinetics. Biophys. J. , 76:2520-2529.
Kushmerick, C., Varadaraj, K. and Mathias, R.T. 1998. Effect of lens Major Intrinsic Protein on glycerol permeability and metabolism. J. Membrane Biol., 161:9-19.
Varadaraj, K., Kumari, S. S. and Skinner, D. M.1997. Molecular characterization of four members of the a-tubulin gene family of the Bermuda land crab Gecarcinus lateralis. J. Exp. Zool.,278:63-77.
Varadaraj, K., Kumari, S. S. and Skinner, D. M. 1996. Actin-encoding cDNAs and gene expression during the intermolt cycle of the Bermuda land crab Gecarcinus lateralis. Gene, 171:177-184.
Varadaraj, K. and Skinner, D. M., 1994. Denaturants or cosolvents improve the specificity of PCR amplification of a G+C-rich DNA using genetically engineered DNA polymerases. Gene, 140:1-5.
Varadaraj, K., Kumari, S. S. and Pandian, T. J., 1994. Comparison of conditions for hormonal sex reversal of Mozambique tilapias. Prog. Fish-Cult., 56:81-90.
Varadaraj, K. and Skinner, D. M., 1994. Cytoplasmic localization of transcripts of a complex G+C-rich crab satellite DNA. Chromosoma, 103: 423-431.
Varadaraj, K. 1993. Production of viable haploid Oreochromis mossambicus gynogens using UV-irradiated sperms. J. Exp. Zool., 267:460-467.
Varadaraj, K and Pandian, T. J. 1991. Effect of solubilizing 17 a-ethynyltestosterone in three solvents on sex reversal ratio of Mozambique tilapia. Prog. Fish-Cult., 53:67-71.
Varadaraj, K., 1990. Dominant red colour morphology used to detect paternal contamination in batches of Oreochromis mossambicus (Peters) gynogens. Aquacult. Fish. Manag., 21:163-172.
Varadaraj, K. 1990. Production of monosex male Oreochromis mossambicus (Peters) by administering 19-norethisterone acetate. Aquacult. Fish. Manag., 21:133-135.
Pandian, T. J.and Varadaraj, K., 1990. Development of monosex female Oreochromis mossambicus broodstock by integrating gynogenetic technique with endocrine sex reversal. J. Exp. Zool., 255:88-96.
Varadaraj, K. and Pandian, T. J., 1990. Production of all-female sterile-triploid Oreochromis mossambicus. Aquaculture, 84:117-123.
Varadaraj, K., 1990. Production of diploid Oreochromis mossambicus gynogens using heterologous sperm of Cyprinus carpio. Indian J. Exp. Biol., 28:701-705.
Varadaraj, K, and Pandian, T. J., 1989. Induction of allotriploids in the hybrids of Oreochromis mossambicus female X red tilapia male. Proc. Indian Acad. Sci. (Anim. Sci.), 98:351-358.
Varadaraj, K. and Pandian, T. J., 1989. First report on production of supermale tilapia by integrating endocrine sex reversal with gynogenetic techniques. Curr. Sci., 58: 434-441.
Varadaraj, K., 1989. Feminization of Oreochromis mossambicus by the administration of diethylstilbestrol. Aquaculture, 80:337-341.
Varadaraj, K. and Pandian, T. J., 1988. Induction of triploids in Oreochromis mossambicus by thermal, hydrostatic pressure and chemical shock. Proc. Aquacult. Inter. Congress, Vancouver, Canada, pp. 531-535.
Varadaraj, K. and Pandian, T. J., 1987. Masculinization of Oreochromis mossambicus by administration of 17α-methyl-5-androsten-3β-17β-diol through rearing water. Curr. Sci., 56:412-413.
|