Yupo Ma, MD, PhD

Yupo Ma, MD, PhD
Medical Director of Flow Cytometry Lab
Scientific Director of Stem Cell Core
Program Director for Hematopathology Fellowship

Basic Sciences Tower, Level 9
Stony Brook Medicine
Stony Brook, NY 11794-8691

Phone: (631) 444-3000
Fax: (631) 444-3424
Email: Yupo.Ma@stonybrookmedicine.edu

Dr. Ma earned his Medical Degree from Jinan University (P.R. China), College of Medicine and a Ph.D. from the University of South Alabama College of Medicine. He completed a residency in Pathology at Brown University, clinical fellowship in Hematopathology at M.D. Anderson Cancer Center and has conducted Post Doctoral Training in Pathology at Harvard Medical School.  Dr. Ma joins the Department as a hematopathologist and serves as Professor of Pathology and Medical Director of the Flow Cytometry Laboratory.  Formerly, he was Chief of Hematopathology, Head of the Stem Cell Program, and Director of the Flow Cytometry Laboratory at Nevada Cancer Institute.

Research Interests:

1. Leukemic stem cells.
We focus on the role of SALL4 in pluripotent progenitor cells and leukemic progenitor cells. The SALL gene family is the mammalian homologue of Drosophila gene Spalt (sal).  In Drosophila, sal mutation can lead to the incomplete separation of the head and trunk of the fly. In the human, heterogeneous mutation of SALL1 causes Townes-Brock Syndrome with renal, cardiac, genital malformation.  Heterogeneous mutation of SALL4 in humans is associated with Okihiro Syndrome with limitation of eye abduction, deafness, and digit malformation.

Recent works has suggested that SALL4 plays important roles during development.  SALL4 plays an important role in the maintenance of pluripotent properties and self renewal during mammalian development.  Consistently, SALL4 is able to bind to both OCT4 and NANOG.  Loss of SALL4 expression results in cellular differentiation.

We have demonstrated that SALL4 is constitutively expressed in acute myeloid leukemias (AML) and fails to turn off in nearly all human AMLs.  A fundamental unanswered question: is constitutive expression of SALL4 sufficient to induce AML?  In addition, what mechanisms of SALL4 induce AML?  How does SALL4 promoter leukemic progenitor cell self renewal?  We have chosen a mammalian model system to approach these questions.  This should allow us to test directly leukemogenic potential of constitutive expression of SALL4 in .  A mammalian model overexpressing SALL4 develops hematopoietic disorders including myelodysplastic-like symptoms and subsequently acute myeloid leukemia.  The constitutive expression of SALL4 is causal to the leukemic phenotype and SALL4 may interact with the Wnt/β-catenin pathway in the leukemogenesis.  Our mammalian models should provide a useful platform to analyze the effect of SALL4 on hematopoiesis and its potential cooperation with Wnt/β-catenin pathway in the pathogenesis of leukemia progenitor cells.  Leukemic progenitor cells are aberrant cells that maintain and propagate blood cancers.

A parallel project involves an investigation of the SALL4 function in development and hematopoiesis.  We are creating a loss of function model for SALL4 using conventional and conditional knockout approaches. In characterizing the phenotype of SALL4 deficient models, we are focusing on the role of SALL4 in regulating hematopoiesis and hematopoietic progenitor cell function. 

2. Stem cell therapy and tissue repair.
Our recent studies are also focused on a stem cell therapy by using adult somatic cells and turning back the development of these cells so they act like embryonic cells. This process, called retrodifferentiation, produces pluripotent stem cells. These induced pluripotent stem cells (iPS cells) in combination with growth factors can then be redifferentiated into cells which may be used to treatment specific diseases. In this case, the iPS derived cells function in the animal to synthesize a protein (clotting factor that has shown it can reverse excessive bleeding, which may eventually be useful for treating hemophilia patients. Our lab is the first to document the ability to “cure” mice with Hemophilia A by a single injection of endothelial cell precursors derived from iPS cells.  Using similar strategies, our lab has generated a variety of differentiated cell types including hematopoietic cells, liver hepatocytes, pancreatic islet cells,  heart cells, lung cells, and various neuronal cell types.  These will be tested in various therapeutic model systems in the near future.


  1. Zimmer, WE, Y. Ma, Goodman, SR.  Tissue Distribution of Brain b-Spectrin mRNAs. Brain. Res. Bul. 1991;27:187-193.
  2. Bloom, ML, Lee BR, Birkenmeier C, Ma Y, Zimmer WE, Goodman SR, Eicher EM, Baker JE. The Gene for Brain Beta-Spectrin Isoform (235) Maps to Mouse Chromosome 11 and Defines a New Region of Synteny to Human Chromosome 2. Mammal. Genome 1992;3:293-295.
  3. Ma, Y, Zimmer WE, Riderer BM, Goodman SR. The Complete Amino Acid Sequence for Brain Spectrin (b Fodrin): Relationship to Globin Sequences. Mol. Brain. Res. 1993;18:87-99.
  4. Zimmer, WE, Ma Y, Zagon IS, Goodman SR. Developmental Expression of Brain b-Spectrin Isoform Messenger RNA. Brain. Res. 1992;594:75-83.
  5. Warren, JC, Murdock, GL, Ma Y, Goodman, SR, Zimmer, WE.  Molecular Cloning of Testicular 20 a-hydroxysteroid Dehydrogenase: Identity with Aldose Reductase. Biochemistry. 1993;32:1401-1406.
  6. Lengeling A, Zimmer WE, Goodman SR, Ma Y, Bloom ML, Bruneau G, Krieger M, Thibault J, Kaupmann K, Jockusch H. Exclusion of Tow Candidate Gene, Spnb-2 and Dcd, for the Wobbler Spinal Muscular Atrophy gene on Proximal Mouse Chromosome 11.  Mammal.Genome. 1994;5:163-166.
  7. Clark MB, Ma Y, Bloom ML, Barker JE, Zagon IS, Zimmer WE, Goodman SR.  Brain Alpha Erythroid spectrin: Identification, Compartmentalization, and Beta Spectrin Associations. Brain. Res. 1994;663:223-236.
  8. Lukacher AE, Ma Y, Carroll JP, Abromson-Leeman, SR, Laning JC, Dorf ME, Benjamin TL. Susceptibility to Tumors Induced by Polyoma Virus is Conferred by Endogenous Mouse Mammary Tumor Virus Superantigen. J. Exp. Med. 1995;181:1683-1692.
  9. Ma Y, Gozman A, Chai L, Steinhoff MM, Hansen K, Maizel AL. Hsal 1 is Related to Kidney and Gonad Development and is Expressed in Wilms Tumor. Pediatri Nephron. 2001;16:701-709.
  10. Ma Y, Li D, Chai L, Maizel AL. Cloning and Characterization of Two Promoters for Human Hsal 2 Gene and Their Transcriptional Repression by the Wilms Tumor Suppressor Gene Product. J. Biol. Chem. 2001;276:48223-48230.
  11. Li D, Dower K, Ma Y, Benjamin TL. A ‘Tumor Host Range’ Selection procedure identifies p150 Sal 2 as a target of polyoma large T antigen. Proc. Natl. Acad. Sci. USA.  2001 ;98:14619-14624.
  12. Ma Y, Chai L, Cortez SC, Sopa EG, Steinhoff MM, Ford D, Morgan J. Maizel AL. SALL1 Expression in the Human Pituitary-Adrenal/Gonadal Axis.  J. Endocrinol. 2002;173 (3):437-48.
  13. Amin HM, Medeiros J, Ma Y, McDonnel TJ, Feretzaki M, Levataki V, Rassidakis GZ, O’Connonr SL, Lai R.  Inhibition of JAK3 induces Apoptosis and Decreases Anaplastic lLmphoma Kinase Activity in  Anaplastic Large Cell Lymphoma. Oncogene.  2003; 22:5399-407
  14. Tian E, Zhang F, Walker R, Rasmussen E, Ma Y, Barlogie B and Shaughnessy JD. The Role of the Wnt/b-catenin Signaling Antagonist DKK1 in Development of Osteolytic Lesions in Multiple Myeloma. New Engl J. MED. 2003, Dec 25; 349(26): 2483-94.
  15. Amin HM, McDonnell TJ, Ma Y, Lin Q, Fujio Y, Kunisada K, Leventaki V, Das P, Rassidakis GZ, Cutler C, Jeffrey Medeiros L, Lai R. Selective inhibition of STAT3 induces apoptosis and G(1) cell cycle arrest in ALK-positive anaplastic large cell lymphoma. Oncogene, 2004, June 7, 1-9
  16. Li D, Tan Y, Mok S, Ma Y and Benjamin TL. p150Sal2 Is a p53-Independent Regulator of p21WAF1/CIP . Mol. Cell. Bio . 2004. 24:3885-93.
  17. Ma Y, Mansour A, Bekele BN, Zhou X, Keating MJ, O'Brien S, Giles FJ, Albitar M.  The clinical significance of large cells in bone marrow in patients with chronic lymphocytic leukemia. 2004. Cancer. 100:2167-75.
  18. L Chai, Yang J, Di C, Cui W, Lai R, and  Ma Y. Transcriptional activation of the SALL1 by the  human SIX1 domain. 2006, J. Biol. Chem. 14;281(28):18918-26.
  19. Ma Y, Wei C, Yang J,  Qu J,  Di C , Amin HM, Lai R, Ritz J, Krause DS, and L Chai.  SALL4, a novel oncogene, is constitutively expressed in acute myeloid leukemia (AML) and is sufficient to induce AML in transgenic mice. 2006,  Blood, Oct 15;108(8):2726-35.
  20. Zhang J, Tam W, Tong GQ, Wu Q, Chan BS, Lou Y, Yang J, Ma Y, Chai L, Ng H, Lufkin T,   Robson P and B Lim. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1.  2006  Nature Cell Biology, 2006 Oct;8(10): 1114.
  21. Lai R, Lefresne SV,  Franko B,  Hui D, Hanson J, Mirza I,  Mansoor A, Amin HM, Ma Y. Immunoglobin Vh  somatic hypermutation in mantle cell lymphoma- mutated genotype correlates with better clinical outcome 2006 Modern Pathology 2006 Nov;19(11):1498-505.
  22. Wei C,  Nikki Kong, Ma Y, N, Yang J, Amin HM, Lai R and   L Chai. Expression analysis of a novel oncogene,  SALL4, in lymphoma, multiple myeloma,  and acute lymphoblastic leukemia.  2006 Modern Pathology, 2006 Dec;19(12):1585-92.
  23. Yang J, Chai L,  Liu F, Flink L,Pei L, Siberstain L, Amin, HM,  Ward D, and Ma Y. Bmi-1 is a SALL4 Target Gene for SALL4 in Hematopoietic and Leukemic Cells. 2007,  Proc. Natl. Acad. Sci. USA.104:10494-10499
  24. Wong  BY, Ma Y,  Fitzwilson R , Dang HD. De novo maintenance therapy with denileukin diftitox (Ontak®) in a patient with peripheral T-cell lymphoma is associated with prolonged remission. 2008, AM J Hematol Jul;83(7):596-8.
  25. Yang Y,  Chai L, Fowles T, Alipio Z, Fink LM, Ward  DC and  Ma Y SALL4 is a key regulator of survival and apoptosis in human leukemic cells. Blood, 2008 Aug 1;112(3):805-13. Epub 2008 May 16.
  26. Yang Y,  Chai L, Fowles T, Alipio Z, Fink LM, Ward  DC and Ma Y. Genome-wide analysis reveals Sall4 to be a key master regulator of pluripotency in  murine embryonic stem cells. 2008, Proc. Natl.  Acad. Sci. USA. Dec 16;105(50):19756-61. Epub 2008 Dec 5
  27. Goodman O.B., Fink L.M, Symanowski J, Wong B, Grobaski B, Pomerantz D,  Ma Y, Ward D, Vogelzang N.  Circulating Tumor Cells in Patients with Castration-resistant Prostate Cancer- baseline Values and Correlation with Prognostic Factors.  Cancer Epidemiology, Biomarkers & Prevention, 2009 Jun;18(6):1904-13
  28. Teresa MO, Melin T, Tarango M, Fink LM, Martin M, Ma Y, Waner M. Differential expression of Ski oncogene protein in hemangiomas. Otolaryngology-Head and Neck Surgery. 2009, 141, 213-218
  29. Gai H, Leung EL, Costantino PD, Aguila JR, Nguyen DM, Fink LM, Ward DC, Ma Y. Generation and characterization of  functional cardiomyocytes using induced pluripotent stem cells derived from human Fibroblasts. 2009, Cell Biol. International, Nov;33(11):1184-93. Epub 2009 Sep 1.
  30. Bard D, Gelebart P, Amin HM, Young LC, Ma Y, Lai R.  STAT3 is a transcriptional factor regulating the gene expression of SALL4. 2009, FASEB J. ;23(5):1405-14. Jan 16.
  31. Lu J, Jeong H, Kong N, Yang Y, Carroll J, Luo HR, Silberstein LE, Ma Y, and L Chai.  Stem cell factor SALL4 represses the transcriptions of PTEN and SALL1 through an epigenetic repressor complex. PLoS ONE 2009;4(5):e5577. Epub 2009 May 18
  32. Xu D, Alipio Z,  Fink  LM, Adcock  DM, Yang Y,  Ward DC, Ma Y. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy, 2009, Proc. Natl. Acad. Sci. USA.Jan 20;106(3):808-13.
  33. Wang P, Wu F, Ma Y, Li L, Lai R, Young L. Functional characterization of the kinase activation loop in nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) using tandem affinity purification and liquid chromatography-mass spectrometry. J Biol Chem. 2010 Jan 1;285(1):95-103.
  34. Armanious H1, Gelebart P, Mackey J, Ma Y, Lai R. STAT3 upregulates the protein expression and transcriptional activity of β-catenin in breast cancer.2010. Int J Clin Exp Pathol   Jul 25;3(7):654-64.
  35. Alipio Z, Adcock  DM, Waner  M, TMing-Jung O T , Fink  LM,, Ward DC, Ma Y. Sustained FVIII production in hemophiliac mice 1 year after engraftmentwith iPS cell-derived FVIII producing endothelial  cells. 2010,  Blood Coagul Fibrinolysis. Jul;21(5):502-4.
  36. Gai H, Nguyen DV,  Moon  YJ, Aguila JR, Fink LM, Ward DC, Ma Y. Generation of Murine Hepatic Lineage Cells from Induced Pluripotent Stem Cells. 2010, Differentiation. 79(3):171-81.
  37. Khoury J, Adcock DM, Chan F, Symanowski JT, Tiefenbacher S, Goodman O, Lazara P, Ma Y, Ward DC, Vogelzang NJ, Fin LM. Increases in quantitative D-dimer levels correlate with progressive disease better than circulating tumor cell counts in patients with refractory prostate cancer. American of J. Clinical Pathology. 2010, Dec;134(6):964-9
  38. Yang Y, Chai L, Ma Y.  A novel SALL4/OCT4 transcriptional regulation feedback loop in embryonic stem Cell, PLoS One. 2010,  21;5(5):e10766.
  39. Alipio Z, Liao W,  Roemer EJ,  Waner M, Fink LM, Ward DC, Ma Y. Reversal  of Hyperglycemia in Diabetic Mouse Models using iPS derived Pancreatic   Beta-Like Cells. Proc Natl Acad Sci U S A. 2010. Jul 7.;107(30):13426-31
  40. Leung EL,  Fiscus RR, Tung JW, Tin VP,  Cheng LC, Sihoe AD,  Fink LM, Ma Y and  MP Wong. Identification, isolation and characterization of CD44- positive cells as cancer stem cells in non-small cell lung cancer. PLoS One. 2010 Nov 19;5(11):e14062.
  41. *Ma Y,  *Liu J,   Kong N , Alipio Z , Gao C , Krause DS, Silberstein D, Chai L. Dissecting the role of SALL4, a newly identified stem cell factor, in chronic myelogenous leukemia, Leukemia. 2011 Jul;25(7):1211-3..  *Authors contributed equally.
  42. Aguila JR, Liao W, Yang J, Hagag N, Senzel L and Ma Y. SALL4 as a robust  expanding factor for hematopoietic stem cells, Blood. 2011 Jul 21;118(3):576-85.
  43. Zaida A. Alipio ZA, Jones N,  Liao W, Yang J, Kulkarni S, Kumare S, Martin, Hauer-Jensen M, Ward DC,  Ma Y and Fink LM. Epithelial to Mesenchymal Transition (EMT) Induced by Bleomycin or TGFb1/EGF in Murine Induced Pluripotent Stem Cell-Derived Alveolar Type II-like Epithelial Cells. Differentiation, 2011 May 17. 82(2):89-98.
  44. Aguila JR , Mynarci D, Ma Y.   SALL4: finally an answer to the problem of expansion of hematopoietic stem cells? Expert Rev. Hematol, 2011 Oct;4(5):479-81
  45. Xu D, O T, Shartava A, Fowles T, Yang J, Fink L, Ward D, Mihm M, Waner M and Ma Y. Isolation, characterization, and in vitro propagation of infantile hemangioma stem cells and an in vivo mouse model. J Hematol Oncol. 2011 Dec 22;4:54.
  46. Yang J, Aguila JR, Alipio Z, Lai R,Fink LM, and Ma Y.  Enhanced Self-Renewal of Hematopoietic Stem/Progenitor Cells Mediated By the Stem Cell Gene Sall4. J Hematol Oncol, 2011 Sep 23;4:38.
  47. Bellon M, Svensson A, Zaslav A, Spitzer S, Golightly, Celiker  M, Hu  Y, Ma Y, Ahmed T.  Pediatric T-cell Prolymphocytic Leukemia with an Isolated 12(p13) Deletion and Aberrant CD117 Expression: A Case Report and Review of the Literature. Exp Hematol Oncol. 2012 Apr 18;1(1):7. doi: 10.1186/2162-3619-1-7.
  48. Yang J, Lai W, Ma, Y. Role for SALL4 in Hematopoiesis. Curr Opin Hematol. 2012 Jul;19(4):287-91. doi: 10.1097/MOH.0b013e328353c684.
  49. Schuster, Ma G, Stukpnikov, Ma Y, JR Agila. Expansion of Hematopoietic Stem Cells and Bone Marrow Transplantation: Current Perspectives. Exp Hematol Oncol. 2012 May 14;1(1):12. doi: 10.1186/2162-3619-1-12.
  50. Yang J, Corsello TR, and Ma Y. SALL4 Suppresses Transcription through DNA Methyltransferases Repressors. J. Biol. Chem. 2012 Jan 13;287(3):1996-2005.
  51. P Wang, J Zhang, Wu F, Sharon D, Hitt M, McMullen TP, Hegazy SA, Gelebart P, Yang J, Ma Y, Lai R. Expression of the Embryonic Stem Cell Marker SALL4 Confers Survival Signals and Growth Advantages in Alk-Positive Anaplastic Large Cell Lymphoma. Cell Signal. 2012 Oct;24(10):1955-63.
  52. Wu F, Zhang J, Wang P, Ye X, Jung K, Bone KM, Pearson JD, Ingham RJ, McMullen TP, Ma Y, Lai R. Identification of two novel phenotypically distinct breast cancer cell subsets based on Sox2 transcription activity. Cell Signal. 2012 Jul 16;24(11):1989-1998.
  53. Gelebart P, Hegazy SA, Wang P, Anand M, Sharon D,  Hitt M,  Ma Y and Raymond Lai R. Aberrant expression and biological significance of Sox2, an embryonic stem cell transcriptional factor, in ALK-positive anaplastic large cell lymphoma. Blood Cancer Journal 2012, Aug 10. 1475-2867
  54. Yang F,  Yao Y, Jiang Y, Lu L,  Ma Y, Dai W. Sumoylation is important for subcellular localization and transcriptional activity of Sall4, an essential stem cell transcription factor.  J Biol Chem. 2012 Nov 9;287(46):38600-8. doi: 10.1074/jbc.M112.391441. Epub 2012 Sep 25J
  55. Shen Q, Liu S, Hu J, Chen S, Yang L, Wu BX, Ma Y, Yang J, Ma Y, Li Y. The differential expression pattern of the BMI-1, SALL4 and ABCA3 genes in myeloid leukemia. Cancer Cell International, 2012 Oct 15;12(1):42. [Epub ahead of print]
  56. Gao C, Kong NR, Li A, Tatetu H, Ueno S, Yang Y, He J, Yang J, Ma Y, Kao GS, Tenen DG, Chai L SALL4 is a key transcription regulator in normal human hematopoiesis. Transfusion. 2012 Aug 31. .1537-2995.
  57. Mathison M,  Gersch PP, Nasser A,  Lilo S, Korman M, Fourman M, Hackett N, Shroyer K,  Yang J,  Ma Y, Crystal GR, and Rosengart KT. In Vivo Cardiac Cellular Reprogramming Efficacy Is Enhanced by Angiogenic Preconditioning of the Infarcted Myocardium With Vascular Endothelial Growth Factor. J Am Heart Assoc. 2012 Dec;1(6):e005652. doi: 10.1161/JAHA.112.005652.
  58. Chen S,  Liu S, Xu L, Yang L, Jin Z, Ma Y, Li B, Wu X, Yang J, Ma Y, Li Y, Characteristic expression pattern of BMI-1 and SALL4 genes in placenta tissue and cord blood. Stem Cell Res Ther. 2013 Apr 30;4(2):49.
  59. Lan Wang L, Zeng X, Chen S, Ding L, Zhong, J, Zhao JC, Wang L, Sarver A,  Koller A, Zhi J, Ma Y, Yu J, Chen J, and Huang H.  BRCA1 is a negative modulator of the PRC2 complex Lan Wang. The EMBO Journal, 2013 May 29;32(11):1584-97.
  60. Wu F1, Ye X, Wang P, Jung K, Wu C, Douglas D, Kneteman N, Bigras G, Ma Y, Lai R. Sox2 suppresses the invasiveness of breast cancer cells via a mechanism that is dependent on Twist1 and the status of Sox2 transcription activity. BMC Cancer 2013 Jul 1;13:317. doi: 10.1186/1471-2407
  61. Chen S,  Liu S, Xu L, Yang L, Jin Z, Ma Y, Li B, Wu X, Yang J, Ma Y, Li Y, Characteristic expression pattern of BMI-1 and SALL4 genes in placenta tissue and cord blood.  Stem Cell Res Ther. 2013 Apr 30;4(2):49.
  62. Liu L1, Souto J, Liao W, Jiang Y, Li Y, Nishinakamura R, Huang S, Rosengart T, Yang VW, Schuster M, Ma* Y, Yang* J. Histone Demethylase LSD1 is Involved in SALL4 Mediated Transcriptional Repression in Hematopoietic Stem Cells.  J Biol Chem.  2013 Nov 29;288(48):34719-28 *Corresponding author
  63. Lu Y, Xu D, Zhou J, Ma Y, Jiang Y, Zeng W, Dai W.  Differential responses to genotoxic agents between induced pluripotent stem cells and tumor cell lines. 2013, Jounal of Hematology &oncology, 2013, 1756-8722-6-71
  64. Lan Wang L, Zeng X, Chen S, Ding L, Zhong, J, Zhao JC, Wang L, Sarver A,  Koller A, Zhi J, Ma Y, Yu J, Chen J, and Huang H.  BRCA1 is a negative modulator of the PRC2 complex Lan Wang.  The EMBO Journal, 2013 May 29;32(11):1584-97.
  65. Wu F1, Ye X, Wang P, Jung K, Wu C, Douglas D, Kneteman N, Bigras G, Ma Y, Lai R. Sox2 suppresses the invasiveness of breast cancer cells via a mechanism that is dependent on Twist1 and the status of Sox2 transcription activity. BMC Cancer,  2013 Jul 1;13:317. doi: 10.1186/1471-2407-13-317
  66. Liao W, Aguila JR, Yao Y,  Yang J, Zieve G, Jiang Y,  Avila C, Senzel L, Lai R,  Xu D PhD, Dai W PhD,  Ma Y. Enhancing bone marrow regeneration by SALL4 protein in mice. J Hematol Oncol, 2013 Nov .1186/1756-8722-6-84
  67. Lu Y, Xu D, Zhou J, Ma Y, Jiang Y, Zeng W, Dai W.  Differential responses to genotoxic agents between induced pluripotent stem cells and tumor cell lines. J Hematol Ocol, 2013 Sep 20;6(1):71.
  68. Yakaboski E, Jares A, Ma Y. Stem cell gene SALL4 in aggressive hepatocellular carcinoma: A Cancer Stem cell-specific target? Hepatology. 2014 Jul;60(1):419-21
  69. Ye X, Wu F, Wu C, Wang P, Jung K, Gopal K, Ma Y, Li L, Lai R. β-Catenin, a Sox2 binding partner, regulates the DNA binding and transcriptional activity of Sox2 in breast cancer cells. Cell Signal. 2014 Mar;26(3):492-501.
  70. Wu M, Yang F, Ren Z, Jiang Y, Ma Y, Chen Y, Dai W. Identification of the nuclear localization signal of SALL4B, a stem cell transcription factor.  Cell Cycle. 2014 May 1;13(9):1456-62.
  71. Yao Y, Lu Y, Chen WC, Jiang Y, Cheng T, Ma Y, Lu L, Dai W. Cobalt and nickel stabilize stem cell transcription factor OCT4 through modulating its sumoylation and ubiquitination. PLoS One. 2014 Jan 31;9(1):e86620
  72. Ye X, Wu F, Wu C, Wang P, Jung K, Gopal K, Ma Y, Li L, Lai R. β-Catenin, a Sox2 binding partner, regulates the DNA binding and transcriptional activity of Sox2 in breast cancer cells. Cell Signal. 2014 Mar;26(3):492-501.
  73. Ma H,  Mallampati S, Lu SL, Sun B, Enze Wang E,  Leng X, Gong Y, Shen ,Yin C, Jones D, Amin HM, You J, Zweidler-McKay P, Ma Y, Hagop M,  Kantarjian H, Arlinghaus, Glassman A, and Sun X. Sox4/Tcf7l1 Axis Promotes Progression of BCR-ABL+ Acute Lymphoblastic Leukemia.  Haematologica 2014 Oct;99(10):1591-8
  74. Bellone M, Zaslav AL, Ahmed T, Lee HL, Ma Y, Hu Y. IGH amplification in patients with B cell lymphoma unclassifiable, with features intermediate between diffuse large B cell lymphoma and Burkitt's lymphoma. Biomark Res. 2014 May 9;2:9. doi: 10.1186/2050-7771-2-9
  75. Liu L, Liu L, Leung E, Cooney AJ, Chen C, Rosengart TK, Ma Y, Yang J. Knockdown of SALL4 enhances all-trans retinoic acid-induced cellular differentiation in acute myeloid leukemia cells. J Biol Chem. 2015 Mar 3. pii: jbc.M114.634790.
  76. Firor AE, Jares A, Ma Y. From humble beginnings to success in the clinic: Chimeric Antigen Receptor modified T cells and implications for immunotherapy. 2015, Exp Biol Med, In Press
  77. Liao W, Huang N,  Yu J,  Jares A, Yang J, Zieve G, Avila C, Jiang X, Zhang X, Ma, Y. Direct conversion of cord blood CD34+ into neural stem cells by OCT4. 2015, Stem Cell Translational Medicine, in Press